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The purpose of this ,investigation was to design and implement a
graphics based environmenticapable of upporting the rapid prototyping of

pictorial cockpit displays 4ttention was focused on the interactive

construction of pictorial type cockpit displays from libraries of cockpit
displays and symbology.

Implementation was based on an object-oriented programming

paralgm. This approach provided a natural and consistent means of

mapping abstract design specifications Into functional software.
Implementation was msxprted by an object-oriented extension to the C,&

programming language.
Although this Investigation addressed a specific application, the

resulting graphic environment Is applicable to other areas requiring the

rapid prototyping of pictorial display&.\

IxI
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A GRAPHICS ENVIROMIENT SUPPORTING THE RAPID PROTOTYPING OF

PICTORIAL COCKPIT DISPLAY5

IL Introduction

The demand for cockpit displays has currently surpassed the

capabilities for generating them. An ever-Increasing time lag between

requirements definition and Implementation has developed. Cockpit display

generation can take from weeks to years to Implement adding to

0 development cost and reducing research effectiveness CAFWAL AC/CSRL

Technical Program Plan,, 19851 Two major factors have contributed to the

current cockpit display shortage. They are the lack of automated design

tools and the lack of a reusable software base for cockpit display

developmenLt

Currently, cockpit display design Is a tedious, manual process. Tools to

support rapid prototyping of generic cockpit displays are almost

non-existant. The few tools that do exist are usually tailored to a specific

display type (e.g. Head Up Displays) [Adams, 19851 severely restricting their

applicability to other display types. Software bases suffer from similar

limitlations. They either don't exist, must be generated manually, are

tailored to a specific cockpit display type, or are so device dependent that

portability Is Impossible.

Introduction
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Figure 1. Heads Up Display.

This thesis proposed a partial solution to this problem by:

"I) developing a set of automated design tools capable of supporting the

"rapid prototyping of multiple cockpit display types, and

2) establishing a reusable on-line software base to aid cockpit display

constructlon-

These solutions were realized In a highly Integrated, Interdctlve

grapMcs environment. This environment provided a dynamic medium for the

rapid proto"ypIng of multiple display types by providing the capability of

constructing cockpit layouts and cockpit symbology from an on-line

software base of cockpit layouts and cockpit symbology. Layouts were

constructed, In a building block fashion, by selecting existing cockpit

layouts and/or cockpit symbology from a software base and pasting them on

a representation of an actual cockpit display. Figure I illustrates a Heads

Up Display (HUD) constructed via this methodology. Individual cockpit

symbols are constructed In a similar manner from a set of graphic

Introduction 2



primitives The ability to construct both cockpit layouts and cockpit

symbology on-line makes this erivronment a feasible solution for the

cockpit design/research problem.

Iurrent kig_ Currently, the design and implementation of a

cockpit layout design Is a long and tedious process it requires many steps,

each performed manually by different experts These steps art

- Design Layout and Analysis
- Design Translation to Software

- Integration with Aircraft Simulation Models

- Testing and Evaluation

Design layout and analysis is the act of capturing the designer's

ideas on paper. Cockpit layouts are assembled in a building block fashion

from pre-deflned sets of cockpit components Components are selected and

positioned on the layout. New components are created and saved as

requirements dictate. "The final layout can be viewed as a collection of

cockpit components spatially arronged to satisfy a design requirement.

When the layout Is complete, it is transferred to software and

simulation experts for translation into computer code. Each component may

be realized with an associated subroutine or procedure. It Is the

responsibility of the software and simulation experts to create source code

files, composed of the various procedres, Into a single application for

testing. New components, with no associated code, will require Individual

design, coding, and testing before they are integrated Into the final

S appllcatlon.

Introduction 3



The wount of time and code required during this phase depends
directly on the complexity of the layout Layouts that are slight

modifications to existing ones, require a minimal amount of software to be

generateL A new layout with new compMenats will requlre extensive time

and software resources. In either cme, design translation Is an expensive

and time consuming activity. It requires extensive debugging and testing of

each Individual component and system testing of the final deulgiL

After the design has been translated to code, It Is Integrated with
various aircmft simrulation models for tasting. This step can also be very

time consuming and resource expensive. The result of this step Is a
complete software simulation of the cockpit design constralned by the

specific aircraft characteristics, ready for testing by the designer and the

Intended usr.

The final software product is--then Installed within a simulation

cockpit for testing. It Is at this stag that the user and desgner can

actually Tfly the design If testing reveals that modifications to the current

layout are necessary, the layout Is re-cycled through the process outlined

above. Althouh redesign Is usually not as an extensive development effort

as the original design, It still consumes a considerable anmomL of time and

support resourcet

Ragm. Four major problems exist with current methodology; they

are as follows:
- Tedlous (manual) Process

- Time Consuming

- Non-Responsive

- Device Dependent

Introduction 4
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One of the main problems with. the current methodology i that

virtually all steps are performed manually. Design layout, analysis, and any

required corrections are manually performed on paper. Design translation Is

performed by software and simulation experts who manually write, debug,

and test the code. The resulting code is then manually Integrated with

aircraft simulation models for dynamic testing.

Not only Is the current design process tedious, it is also time

consuming. Depending on the complexity of the design, Implementation

(from design conception to testing and evaluation) can tMke from weeks to

years to complete. By the time the design Is Implemented, the designer Is
pursuing other layout schemes or the current layout is no longer pertinent.

The cdudgery of the manual process, coupled with an ever-Increasing

, time delay between Idea conception and implementation, fosters a design

process that Is non-responsive to the designer's needs. The current process

does not provide the designer with an effecive or efficient means of

evaluating and modifying the design In a continuous, and timely, fashion. The

designer becomes as outside participant In the design process once the

design translation begins. Not until the test and evaluation phase can the

designer interject Inputs to the design process. Then, all errors or

modifications identified result in the software being turned over to

software and simulation experts for re-work. This can entail lengthy

modification, testing, and debugging before the software Is returned to the

designer. Simple changes can take weeks to implement. The ability to fine

tune designs becomes almost impossible due to the time and resource

expenses Involved.

Introduction 5
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Another factor contributing to the non-reponsive, inflexible nature of

the current design process is the software dependencies on specific

hardware devices. Due to the heterogeneous nature of the hardware

environment, much of the software written to implement cockpit displays Is

device dependent. Rosting- a design (i.e. the software) often entails a

duplicate development effort. The original software may require a complete

re-design to function on the new hardware. Even a minimal rehosting effort

will require extensive testing and debugging of the new software In Its new

hardware environment to ensure compliance with original raluirements.

K5IBIM. Research to provide an alternative to the current

methodology was undertken and reported In the 1985 Air Force Institute of

Technology (AFIT) thesis entitled *A Display Environment Supporting the

S Interactive Generation of alphaNumerics and Symbology with DESIC4, on the

Future (referred to as DESIGNS). DESIGNS had two ellt 1) to demonstrate

the feasibility of using a graphics based environment for the generation and

editing of display formats and 2) the automatic generation of source code

from the display format for a targeted graphics device (Aains., 1985:501

To accomplish these goals, an Initial system was Implemented to

develop and modify HUD formats. The designer could interactively lay out

HUDs from pre-defined sets of HID symbols. Code was automatically

generated from a layout by linking together source code associated with

each HID symbol In the display. The source code and the symbols were

maintained in on-line libraries. Manual Intervention was confined to the

layout process

DESIGNS significantly reduced the time required for static HIM

Implementation from weeks/months to an average of 30 minutes. The 30

Introduction 6
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minutes Included actual HUD layout activity and subseqent software

generation [Adams, I9861 It should be emphized that a i HUD layouts

were constructed from pre-existing symbol sets. Dynamic Inclusion of new

symbols was not directly supported by DESIGNS. The designer was still

dependent on software experts to manually Integrate new symbols Into the

DESIGNS environment.

ACLM.J . Using DESIGNS as a bailine for development, the Air Force

Wight Aeronautical Labtorles, Flight Dynamic Laboratory (AFWAL/FIGR,

FIGO) Initiated research directed toward implementing an Advanced

CockIt/Crew Station Research Lboratory (AC/CSRL). The goal of t'e

AC/CSRL Is to automae the entire cockpit design process, with the =min

objective of keeping the designer as the focal point of all aspects of the

design process. Currently the AC/CSRL Is In definition pham;

implemetation Is not expected until the I 9W0L

AC/CSI. is expected to support the following:

- Interactive design and modification of cockpit layouts,

- automatic generation of source code from the design,

- automatic linkage to aircraft simulation models, and

one day turnaround time to prepare completely new cockpit
arrangements for testing [AFWAL AC/CSRL Technical Program
Plan, 19851

Unlike DESIGNS, which only supported the development of HUD-type

displays,, the AC/CSRL will support a variety of displays, from simple

alphanumerics to complex pictorial type displays. In addition, the AC/CSRL

will also support dynamic creation and Integration of new cockpit

symbology Into the design environment

Introduction 7
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Figure 2. AC/CSRL Concept.

To accomplish this,, the AC/CSRL wilt rely heavily on a flexible

graphical Interface and on online libraries of cockpit symbology and
associated source code. Displays wilt be constructed In a building block
fashion, by selecting cockpit symbols from the librares and placing them on
a repsentation of an actual cockpit display. Sourc code will then be
automatical ly generated and combined with aircraft simulation packages to
produce a full mission scenario. The designer, In effect, wilt be able to
construct a design layout, generate the corresponding code, and dynamically
test the design within the same envIronenL. The design process will no
longer be dependent won software and simulation expert, thus Improving
turnaround time and reducing costs. Figur 2 conceptually depicts the
ACCSAL concept with Its associated components.

At a procedural level the AC/CSP.I will not drastically alter the nature
of the design process The same procedures performed In the current manual
design process will also be peformed via the AC/CSRL. However, the

Introduction8



degree of mh !i intemventlon Is significantly different between the two.

The current process is almost entirely manual. Few, If any, of the steps are

automated. In contrast, the goal of the AC/CSRL is to automate the entire

Design layout and analysis will be supported Interactively via a

flexible graphics Interface, known as the Automated Layout Center (ALC).

The ALC Is the focal point of all cockpit design activity. All cockpit layout

design as well a cockpit symbology construction is handled through the

M.C. It provides the designer with a window into the AC/CSRL environment.

Testing will be significantly enhanced. Complete simulation senrvos

will be generted for the designer and Intended user to test (I.e. 'fly') and

evaluate. Redesign will be supported In a more timely manner. It should be

possible to Incorporate modifications and retest a redesign within the si4te

day, as opposed to weeks In the current process. This should significantly

improve productivity and promote experimentation of alternative display
r seprentations.

Prahl m Stattment

The oal "i' thi• thesis research was to demonstrate, in part, the

feasiblifLy of the AC/CSRL concept by designing and Implementing a

prototype of the Automated Layout Center. The prototype ALC focused on

the rapid prototyping of pictorial type cockpit displays via the use of

on-line libraries of cockpit layouts and cockpit symbology. In addition to

addressing a rapid prototyping capability, this thesis also presented a

candidate user Interface for the ALC.

Introduction 9



, ~ h N implementation of the prototype ALC was based on an
object-oriented paradigm. An object-oriented approachi wa chosen because
it provid ed a framework that was a Odlrect, and natural con'espondence
betwee the world U&~ MWi Aswr oww) and Its model (Is a viktwi
0001% -dwlrl) [Borgidsaet al.v IM6:851 (Italic phrases aded by author).
To suppport such an Implementation, on object-oriented extension of the 'C
programming lwangag was Implemented. Thene extensions were modeled
after the Snmalltalk environment [Soldb" and Robson, 19831.

The objective of this thesis was to deuign and Implement a prototype
AIC supportng the rapid prototyping of cockpit displays. The results from

, ~this effort were to be used as guidlines for future AC/CSRL related
projects. Since this was a rather MnIMIou project, the following
constraints were placed on this research ef fort.

Rrtath of Implementation. The prototype ALC design consisted of
tour functional vonea; 1) the user Interface,, 2) the Layout Editor, 3) the
Symbol Editor, and 4) theLM in The user Interface provided the dynamic
medium through which all user Interactions IVII .. L ' Ih~

handled. The Layout Editor, a graphics editor, supported the dynamic
prototyping of cockpit layouts. The Symnbol Editor, another graphics editor,
supported the creation and modification of cockp.it symbology. The Librm1wi
provided an archival mechanism used to store and retrieve cockpit layouts
and cockpit symbols.

Introduiction 10
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Due to time constraints and for demonstation purpose, only the user

Interface and Layout Editor were Implemented. The exclusion of the Synubol

Editor and Librarian did not s'gnIfIcantly distract from the goal of

demonstrating the feasibility of the ALC concept. However, for

completeness, and future Implementation, the requirements definition and

design of all four functional areas we presented in this thesis.

WiSPlaiy 11mmmlii. The AC/CSRL Is xpected to support the

creation of both two and three dimensional cockpit display representations.

The prototype ALC supported only the design and representation of two

dimensional cockpit displays. Three. dimensional cockpit display

representation will be an essential component of future displays; however,

Including this capability within this thesis would only serve to distract

* from the fundamental characteristics of the ALC that needed to be

addressed first. The ALC prototype design does not explicitly rule out the

Inclusion of three dimensional capabilities, but on the other hand, It does

not explicitly address It either.

f~�nf iawnratim The AC/CSRP. will automatically generate source

code from the cockpit designs created on the ALC. Code generation is not

addressed In this thesis. The prototype ALC only supports the creation and

modlflcption of cockpit layout formats; It does not generate source code

from said layouts

IrwP1, L ua. This thesis cannot address the merits of which input

device(s) sMould be used to Interface with the prototype ALC. Although the

IM 0ý AC/CSRL will ,,t w't many devices, time constraints and the lack of

Introduction W
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available input devices for Interfacing prohibit consideration In this thesis.

O As such, the primary means of Interaction will be vii a mouse. The keyboard

Is used for retrieval of textual Information only (i.e. filenames, labels, etc.).

Ima etahliJt. A key requirement of theo AC/CSR. Is device

Indepenec. Device Indepen will allow re-targeting of the AC/CSRL

designs on different graphic devices. This is not attainable for the prr "type

ALC due to the unavailabillty of appropriate systems.

Although the design is device independent, the Implementation is

targeted to a Raster Technologies Model One/25 graphics system. As such,

some sections of the code will be device dependent. These sections have

been Identified and Isolated as much as possible.

e -.quenia af IDrmmntatlmi

The second and third chapters of this thesis present the system

requirements and overall system design. Chapter 2 addresses system

requirements related to three general areas; hardware, software, and the

user Interface for the prototype ALC. Chapter 3 maps the system

requirements Into four functional areas that comprise the ALC prototype's

design, namely; the user Interface, Layout Editor, Object Editor, and the

Librarian

The fourth, fifth, and sixth chapters describe In detail the design of the

four functional area defined In Chapter 3. Chapter 4 addresses the design of

the user Interface, discussing what design considerations were followed

and the actual Interactive components that comprise the user interface.

* Chapter 5 discusses the similarities and differences between the Layout

Introduction 12



Editor and the Symbol Editor. Chapter 6 provides Insight Into the design of

the prototype ALCs archival mechanism, the Libraria.i

Shapter 7 deals with the actual implementation of the ALC prototype.

Implementation is approach from three viewpoints. The first view Is a

description of the actual host hardware for the ALC prototype. This Is

followed by a description of the object-oriented environment used In

Implementing the ALC prototype software. And finally, a description of the

ALC prototype Implementation Is presented. Chapter 8 concludes the

written thesis with conclusions regarding the success of this research

effort and recommendations for the future.

The appendices of this thesis provide Information relative to the

software and hardware environments In which the prototype ALC was

hosted Specifically, Appendix A addresses the design approach followed i•n

Sthe conciptualization of the software. This is followed in Appendix B with

a basic overview of the object-oriented concepts that were used to model

the Implementation of the prototype ALC software. Appendix C provides a

detailed discussion of the object-oriented extensions to the 'C' language

that were Implemented to support the prototype ALC Implementation.

Appendix D outlines the graphic capabilities (i.e. classes) that are currently

supported by the object-oriented Implementation. Appendices E and F

describe the operational characteristics of the Raster Technologies Model

One/25 and associated device drivers.

Introduction 13



* Ua nL u R rmeEsl

There are three primary areas of requirements for the ALC prototype

that this chapter will derine. They are the hardware, software, and the user

Interface areas. Hardware requirements encompass the actual hardware

needed to support the prototype ALC. The software requirements section

describes the functional reqirements and provides guidelines for software

development User Interface requirements bind the hardware and software

requirements together. A detalled description of each requirement category

Is presented in the following sections.

Although no hardware Is being desi"ned, and the target host has already

been Identifled, It Is still worth mentioning, In general terms, the hardware

requirements needed to support the ALC prototype. This section provides

general guidelines to follow If the ALC prototype Is re-hosted at some

future time.

There are four general areas that the hardware discussion should

address. These areas are display technology, Input devices, output devices,

and processing and storage capabilities [Rose, 198225).

Dlsmnly Technoloy. Three basic types or display technologies could

be used for the ALC prototype: vector, storage tube, and raster. Each

S technology uses a technique known as 'phosphorescence' to Illuminate an

Image on the display screen. This process Involves the use of an electron

Requirements 14
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beam to excite a phosphor-costed display screen. The phosphor when

excited, jumps to a higher, unstable energy state. When the beam Is

removed, the phosphor returns to Its original stable state releasing the

excess energy as light. Images are drawn by directing an electron beam on

the phosphor-coated screen in the desired shape or pattern. The method

used to direct the electron beam constitutes the major distinction between

the three technologle&

Vector (or often refered to as stroke, or calligraphic) displays display

Images by directly tracing the Image on the display screen with the electron

beam. This method Is extemely fast and straightforward. However, because

the Illuminated phosphor fades at a exponential rate, the Image must be

continuously retraced (or refreshed) for the Image to remain on the screen

[Foley and Van Damlg82:1061 As more and more Images are drawn, an

Sannoying flicker In the display presentation may develop.

Storage tube displays circumvent the flicker problem by tracing the

Image on a fine mesh grid mounted Immediately behind the phosphor coated

screen. Images traced on the grid are transferred directly on to the

phosphor. The grid acts as a storage medium, saving the Image once It Is

traced. This allows the image to be drawn only once, eliminating the flicker

problem caused by the nee to refresh the screen constantly. However,

since the image Is stored on the grid and continuously displayed, It becomes

almost impossible to make selective erasures from the screen. In order to

erase a single Image, the entire display must be erased and the modified

Image redrawn.

Raster displays differ fundamentally In the way Images are drawn.

Unlike the refresh and storage tube displays, the Image Is not directly

traced on the screen. Rather It is written into a storage area know as a

Requirements i5



Sframe buffer. A frame buffer Is a matrix of bits, each corresponding to a

unique address point (or pixel) on the screwn Each entry In the matrix

stores the brightness and/or color value for Its corresponding screen pixel.

An Image Is displayed by processing the matrix, row by row, using the

contents of each entry to control the electron beam Intensity. The Image Is

thus displayed row by row, starting at the top of the screen and finishing at

the bottorm

Raster displays overcome the problems of screen flicker and erasure

problems associated with vector and storage tube displays. The electron

bean is not required to bounce around the screen tracing an Image but rather

follows a predefined pattern (row by row) with In a predefined time span

(30 to 60 times a second). This allows a display composed of many Images

to be drawn at the same rate a a display containing just a few Images. The

* frame buffer provides a means of doing selective erasures without the

entire scrm having to be erased and redrawf•

The choice of which technology to use often depends on the Intended

application. For applications that require only static displays and minimal

user Interaction; all three technologies could be used. For dynamic, user

Intensive application, such as the ALC prototype, a vector or raster display

would be warrnted. Table I provides a summary of the capabilities of the

three display technologies (Dudley, Ig8238L

Input IDevlei The ALC prototype requires, as a minimum, an Input

device capable of performing the following two functions, 1) cursor

tracking, and 2) object selection. A number of input devices could satisfy

this requirement The most commonly used devices are, the tablet or

Sdigitizer, touchponel, joystick, mouse, and trackball. The choice of which
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AMIL TABLE I
Display Techn~ology Summary

Rester Storage Tubs Dfector

Resolution low to high high very high

Brewing type areas,liein
_______________ realisticliein

M1otion dynamic static dynamic

Color millions green on mono or
____________ _________ green 4 to 8 colors

Interactiveness high low uery high
UeIntelligent dumb stand-alone

___ __ __ __ __ Stand-alnone term inal L system

device Is used will most likely depend on availability of the Input device.
Table 11 summarizes software development cost factors, Input type, and
special considerations related to these devices [Ohison, 1 979:2851

OutmL Deicma The ALC prototype does not require an output device
other than the display screen. If hardcopies, are desired, a plotter or film
recorder could be used.

Procmlhin9 and Storage The central processing unit (CPU) Is the

heart of a graphics system. Regardless of whether the graphics system Is a
stand-alone or remote terminal, the computational processing capabilites or

~ the CPU will directly Influence the type of graphic applications that can be
Implemented and expected to execute within a reasonable amount of time.
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TABLE II

Input Device Summary

Device Software Input Special Considerations

Indirect Some Units-are not
Tablet Medium suitable for online

Graphical Interactioe use.

1ý,,chpanel Low Direct Gross resolution, makes

Tactile detail work Impossible.

Joystick Low Indirect Large variety,
Tactile fits most applications.

Mouse Low Indirect Relative Positioning.Tactile

Trackball Low Ini;•'•ct Slewing capabilities.
Tactile

Computationally Intensive applications such as 3-dimensional modeling and

ray tracing require significant processing power, as opposed to simple line

chart applications. The choice of which CPU to use should be weighed

against the computational aspect of the application, The ALC prototype does

not require an exceptionally powerful CPU. Most 16-bit microprocessors

available on the market today would suffice.

Storage, both Internal (memory) and external (secondary), also

Influence the speed at which an application can execute. Applications

constrained by limited main memory or hampered by slow peripherals, often

* spend a significant amount of time waiting for segments of the application

to be swapped to and from memory or waiting on data transmission from the
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TABLE III

Prototype ALCs Hardware Requirements.

Requirement Implementation

Oisplay Technolgg Refresh or Raster

Cursor Tracking
Input Device and

Object Selection

Output Deuice Optional

Processing 16 bit micro (minimum)
and

Storage I M main memory, 1 OM disk

peripheral device. Instead of performing useful work, the application

becomes 1/0 bouncd. To prevent this from occuring with the ALC prototype,

the host system should have at least I megabyte of main memory and, at a

minimum, a 10 megabyte hard disk. Table III provides a summary of the ALC

prototype hardware requirements.

Software requirements for the ALC prototype can be classified into

"two areas, 1) software development requirements, and 2) implementation

requirements. Software development requirements apply directly to the

software development activity. They serve as guidelines to ensure that the

i software Is developed In a consistent and standard way. They are general In
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nature, and should be appi•ed to all software development effqwts regardless

of the application Implementation reqirements, on the other hand, ae

application specific. They categorially state the functions that the software

must perform. They address 'what! should be implemented, not 'how'.

oftwae Dosl mIut Rmuirmmit. The principles listed here,

we general software requirements- that should be adhered to in the design

and development of the actual software. These principles should be applied

at all levels of the development effort.

Portabilily (devicelhost Indamdmnene)M The prototype ALC should

be designed with host Independence in mind. Since this Is a prototype, it

might be desirable to re-host this system on different workstations. As

O such, the software should be developed with no specific host in mind

Portions of the software that are dependent on the hardware should be

isolated an much as possible and clearly identified.

f li x The software should be designed in a modular manner.

Modularity provides a method of isolating the functions of the software into

well-defined units. These units range in complexity from procedure to

library packages [FaIrley, 1985:1451 Some of the benefits modularity

provides are ease of Implementation, maintenance, debugging, and

complexity management [Shooman, 1983:1101

Man~cft The software should be written so It Is easy to read

and understand. All software modules should contain only one entry and one

* exit point. They should conform to a consistent programming style and
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should not attempt to hide the logic of the function under clever coding

* [Fairley, 1985:209-2141 It should be self-evident what a module doe*

Following such conventions makes the software easier to read, to

understand, and to modify.

EU1timM Efficiency refers to the ability of the software to

operate under the current set of available resources. There are two main

facets of efficiency time and space (Booch, 1983:251 Time efficiency

pertains to the ability of the software and hardware to operate within a

specified time constraint. The only time constraints imposed on this project

are to provide a flicker-free display and response to user commands in a

reasonable time. The system should wait on the user, not vice versa

Space efficiency implies that the software should reside and execute

* within the current available memory. It should not be a requirement of this

research to acquire additional hardware of any type.

EAmnaibIJIMt. To accommodate future modifications, the software

should be designed with generality in mind. In other words, the software

should provide a framework (harness) in which new capabilities (modules)

can be 'plugged In' (Clemons and Greenfield, 1985:401. This will allow the

system to expand as user requirements change and advanced features are

added

Table IV summarizes of the software development requirements.

Imolementation Reguirements Implementation requirements

describe what the user wants the software to do. They are application

specific and need to be clearly identified before the design or
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TABLE IV

0 Software Development Requirements.

Requirement

Portabilitg Host Independent

Isolate the functions of the
Modularitg software Into well defined units

Simplicitg Easg to read and learn

Efflclencg Operate with current set ofaeailable resources

Entensibliltg Easg to add-on new capabilities

implementation begins. There are five basic functions that the ALC

prototype must support:

- Graphical Interaction,

- Direct Manipulation,

- Iterative Development,

- Experimentation, and

- Evolutionary DesigrL

-6rahical Interaction; The process of designing a cockpit display

Is a spatially oriented activity. It relies heavily on graphical Images to
represent cockpit and real-world objects. As such, the prototype ALC
should exploit the use of graphics as a medium for the computer-human
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Interaction. The use of graphics, as a medium for Interaction, provides

certain distinct advantages over the use of text as a medium [Raeder,

1985:121 which are particularly relevant to the ALC prototype and related

AC/CSRL effort& These advantages are discussed In the following

The use of graphics as a medium of Interaction permits Instant random

access (viewing) to any part, of the display screen. The user can focus

attention on a speclfic aspect of the display or can 'back-off' to grasp the
overall structure. The user Is not forced to follow a linear search pattern,

but can switch from object to object, view to view, In a random fashiorn

Text, on the other hand, forces the user to view Information

sequentially (usually top to bottom, left to right). It becomes difficult to

grasp the Information content of text displays. Headlines, bold type, and

Sp provide some relief, but the process still remains sequential In

nature.

Graphics provide multiple levels of dimensionality to the Information

being displayedl Information can be portrayed In two or three dlnanslons

and the physical attributes of the Information (i.e. shape, color, sf-e, etc)

can also be modified. Text, on the other hand, Is a one-dimensional Ptrlng of

characters.

Graphic mediums also capitalize upon the Inherent Image prock ",sing

capabilities of the human sensory system. The mind, a kind of blologlr.**

Image processor, Is extremely adept at accessing and processing vtsua

Information. We tend to conceptualize things as pictures, not words. As the

saying goes, 'A picture Is worth a thousand words'.

The use of graphics as the main means of interaction directly

, Influences the designer's perception of cockpit display creation. The process
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of creating a cockpit display Is very similar to computer programming.

Instead of using a textual-based language such as Pascal or Ado to develop

an application, the designer uses a graphics-based language to build

(program) a display. The immediate details of syntax and control structure

are transparent to the designer. The designer deals directly with the

semantics of the language, understanding the whole verses individual parts

or commands.

Direct Manlaulatlon An Important aspect of graphical Interaction

Is the ability to manipulate objects directly on the screen (Shnelderman,

1983:571 Direct manipulation refers to the ability of the user to modify the

characteristics of an object (I.e. shape, size, color, position, etc.) via some

action. The user Is not required to use an intermediate form (e.g. commands

*Issued from the keyboard) to Initiate an action. The user can use some form

of a pointing device to select the object and then directly manipulate Its

form. Direct manipulation of cockpit objects is a key requirement of this

system [AFWAL AC/CSRL Technical Program Plan, 19851

Itarative DOvelonmnt. The process of developing cockpit

displays Is best implemented via an Iterative process. An Iterative process

allows the user to evaluate and modify the design on a continuous basis

(Shooman, 1983: 361 This process should provide the flexibility to support

the following required activities (AFWAL AC/CSRL Technical Program Plan,

19851:
- Implementation of new designs,

- Implementation of design changes,

- the fine-tuning of designs
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- creation and modification of cockpit symbology, and
- the rapid generation of alternative displays.

EmncImmntatUmn The system should be supportive of
experimentation. It should allow the designer to experiment with possible

design layouts without commitment. In other words, actions performed by

the designer should be 'undo-able' [Harlem, 19841041 The abi Ity to undo'
a design decision allows the designer to explore alternative design

settions without committing expensive and time consuming

software and personnel resource&

A major problem plaguing the current design process Is the Inability to
experiment with cockpit representations 'on-the-fly'. The desgner Is not

afforded the luxury of making minor modifications to a cockpit layout
* Without Incurring additional time and resources to the already expensive

design effort. This often leads to acceptance of the first design, simply

becamse the costs associated with redesign (experimentation) are too

prohibitive.

Evolutiair D0  I%' "Contrary to the Idea that a computer Is

exciting because a vrogrammer can create something from seemingly

nothing, our users were shown that a computer Is exciting because It can be

a vast storehouse of already existing Ideas (models) that can be retrieved

and modified for the user's personal needs. Programming should be viewed

and enjoyed as an evolutionary rather than a revolutionay act" [Goldberg and

Ross, 1981:3541 The Idea of an evolutionary design philosophy Is very

applicable and appealing for the design of cockpit displays. The designer

creates the display In a building block fashion from sets of pre-existing
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TABLE V

Prototype ALC Functional Software Requirements.

Requirement

Graphical Interaction Use of graphics us. text

Direct Manipulatlon Graphical objects directlg
manipulated by the user.

Eualuation and modification
Interatlue Deuelopment of the design on a continuous

basis.

Experimentation Design without commitment

Evolutionary Design Build displays from existing
parts

cockpit objects. The 'vast storehouse' of objects already exists, the

designer simply assembles the objects to form the design.

In order to support an evolutionary mode of operation, the prototype

ALC should provide the capability to save and retrieve cockpit displays and

cockpit symbology. The symbology should consist of sets of standard cockpit

instruments, specialized cockpit objects, and user defined objects. The user

should also be able to add, modify, and delete cockpit symbols Interactively.

The functional requirements of the ALC prototype software are

summarized In Table V.
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The user Interface has been touted as being "the single mast Important
consideration In designing any computer system" [SI'gh, 11983:55). It
functions as a communication channel between the user aid the system. The
success or failure of a system often depnd on the users' ~cceptance of the
Interface. It thus becomes Imperative that the user Interface be viewed as
an aid by the use rather than a hinderence [Singh, 11983:551. To accomplish
this objective several fundamental requirements have been levied on the
user Interface. These requirements are described In the following
pragraph

FIwe gjLMLLa The user Interface should be easy to use. The prototype
* ALC Is expected to be used by a vairiety of users w Ith differing backgr~ounds.

It thus become essential that the user Interface Is not tailored towards
any specific group of users. The user Interface should not reqire expertise
In computer programming or computer graphics to use.

Minimal Memorlzatlou To ensure ease of use,, the user Interf ace
should minimize the commands the user must remember. Commands should
be easy to understand and be displayed for user selection. Help and memory
aide should also be available.

[ahXtoLoamu The user should not have to spend hours learning to use
the system before becoming productive. A good criteria to use to measure
the ease of which a user can learn to use a system Is known as the
-10-minute' rule (Rubinstein arnd Hersh,198148l. This rule states that It
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should not take the user longer than 10 minutes to become familar and

proficent with the system. If It does, the user Interface should be

re-evaluated

Awlyv Eynarlenem.. Experience, acquired In one area of the system

should be applicable to other contexts. The user should not have to re-learn

how to use the system every time he switches applications.

,gmina &Lai All cockpit display composition should be handled by

the user Interface and performed on the screen. Instead of performing the

design layout on paper then translating It onto a screen, composing It on the

screen first will provide a direct mapping from design to implementation.

The designer builds the actual display Instead of a blueprint of It.

FuAdibak Feedback Informs the user what the system Is doing

Feedback should be Immediate, and where appropriate, visual.

Sunnortlve of the demlin rocess. The user Interface should

Interact with the user via a problem space that Is familiar to the user. In

the case of the prototype ALC, the problem space Is a cockpit display. The

user Interface should allow the user to manipulate a representation of the

cockpit display as If It were an actual cockpit display. The user should

work directly on the task (design process) without the user Interface

distracting from the process [Shneiderman, 1983: 631. The user Interface

should be transparent to the user. No distinction between the screen and an

actual cockpit display should exist.

The user Interface requirements are summarized In Table Vi.
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TABLE VI

User Interface Requirements.

Requirement

Ease of Use Does not require expert users

Minimal Memorization Minimize command recall

Easy to Learn 10 Minute Rule

Knowledge gain in one area
Apply E~perlence should apply to others

Composition RII display construction
performed on the screen

Feedback immediate and Uliual

Conduclue to the RLC display ulewed as an
Design Process actual cockpit display

This chapter has presented the functional requirements for the ALC

prototype. These requirements were divided Into three areas, hardware,

software, and the user Interface. Hardware requirements pertain to the

characteristics of the host system to support the ALC prototype. Four areas

were specifically addressed, namely; display technology, Input devices,

output devices, and processing and storage capabilities.

Software requirements addressed the need to follow sound software

engineering principles in the design of the software. Specific functional

requirements of the ALC prototype were also outlined. User Interface
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requirements were presented separately from the finctional software

requirements to emphnize their Importance to the ALC prototype effort.
Several key requirements were.outlined. The remaining chapters of this

thels apply the requirements defined In this chapter to the design and

Rmlpiementatlan of t N.C prototype;0
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O ilum nmma

The function of the ALC prototype is to provide an environment that

supports the creation and modification of cockpit layout designs. The

requirements for this envirmonmet were presented in Chapter 2. This

chapter provides a system level design of the ALC based on those

requirements. The design approach used Is f " ,' ,rlibed, followed by a

system design based on that approach.

This thesis employed the concepts associated with object-oriented

design (OO) as the primary philosophy driving the design of the prototype

&.C software. This particular design methology was chosen because it

provides a direct means of mapping the problem space onto a representation

of the program space (i.e. the Implementation) [Booch, 1983:401 The

designer can defIne and manipulate repre tations of entities (I.e. objects)

In the program space as though they were In the problem space. A

one-to-one mapping Is maintained between the problem space and the

Implementation. The reader should refer to Appendix A for a further

discussion of 000 and Its relation to more traditional design methodologies.

Object-oriented design starts by restating the problem In terms of Its

requirements. This Is then followed by a conceptual Implemention In which

object and associated operations are identlfiled Objects being the actual

* entities that populate the problem space and operations being the actions

that manipulate the objects. Once Identified, the objects and corresponding
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operations we then Implemented (i.e. ma to a software relization).

These Implementation details are not addressed In the design process, but

rather discussed In Chapter 7.

As stated previously, the ALC prototype is Intended to be a highly

interactive graphics system capable of supporting the creation and

modification of cockpit layout designs. To accomplish this goal, several

operational requirements were levied on the prototype ALC. These

requirements afdre d the nied of the prototype ALC to stupp

- a user Interface that is supportive of the design process,

- the dynamic creation and modification of cockpit layouts,

- the ynamic creation and modification of cockpit symbology, and

- an archival mechanism for storage and retrieval of cockpit
layouts and symbology for future use.

These requirements can be realized as four separate but Interrelated

functional componmnts 1) the user Interface, 2) Layout Editor, 3) Symbol

Editor, and 4) a Librarian. The specific functions that each of these

compoents perform will be addressed In later chapters ( 4, 5, and 6). This

chapter serves to identify these four major functional components and

briefly to describe their Interaction.

The Interaction among these components Is best viewed by using a

layered approach. Figure 3. Illustrates the Interrelationship of these

components based on this approach. Each layer represents the relative

degree of Interaction among the components. Only those components that
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User Interface
User

Layout Editor

Symbol Editor

Librarian

Figure 3. Prototype ALC System Structure.

shore a common boundary can interact directly !.with each other. A

description of each layer follows

The most visible layer of the structure Is the user interface. This is

the only layer with which the user directly Interacts. All user requets

and/or system responses re conveyed through this layer. The user

interface maintains a consistent and familiar boundary between the user

and the other layers.

The next layer In the structure contains the Layout and Symbol editors.

The Layout Editor supports the creation and modification of cockpit layout

designs while the Symbol Editor supports the creation and modification of

Individual cockpit symbols. Both editors are directly accessible from the

user Interface and both can directly access the Librarian.

The last layer, the Librarian, serves as a repository for all cockpit

* layout designs and cockpit symbology. The Librarian can only be accessed by
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one of the two editors. The user cannot directly accm the Librarian

O without Invoking an editor first. This prevents the user from unwittingly

corrupting the cockpit layouts or symbology.

The detailed design considerations for each layer will be presented In

the followInrg chAptem.

The design of the prototype ALC software Is based on an

object-oriented design (000) approach. Bsically OOD Involves,

- defining the prolemo

- Identifying the objects In the problem domain, and

- Identifying the operations on those objects.

This wpo Nch wU usemdto derive a system level design of the ALC
prototype. Four system components (objects) were Identified They were

the user Interface, Layout Editor, Symbol Editor, and the Librtian. The

interrelationship of these components was Illustrated. The following

chapters (4, 5, and 6) apply this design method to each of the system

components Identified, providing detailed design considerations for the

prototype ALC software.
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The most visible aspect of the ALC prototype Is the user interface

(Figure 4). It Is the medium through which all user actions and system

responses are handled. The style in which the interaction is conducted can

directly influence the user perception and acceptance of the system. It thus

becomes Imperative that the user Interface is based on ideas or concepts

that enhance the design process, The user interface should be viewed as an

aid rather than a hindrance, The discussion of the design of the prototype

ALC user interface Is divided Into two sections. The first section describes

key design considerations that were used during the interface design phase.

The second section presents the realization of these considerations

* embodied in the actual user interface components.

Design CrlatnI

Traditionally, computer systems were designed to give the user the

utmost amount of computer power. Little, If any, attention was given to

user Interface Issues. As a result, users were often overwhelmed with

complex and terse commands. Initial user productivity suffered due to the

level of training required to become proficient in system use. Procedures

and concepts learned In one section of the system seldom carried over to

others (Harslem, 1984:1051. Users were often confronted with systems that

were cumbersome, frustrating, and difficult to use [Bertino, 1983:381.
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User •User Interface

Loaout Editor

":4gmbol Editor

Librarian

Figure 4 User Interface Layer.

Recent trends In system development, most noticeably the Xerox Star

[Smith et. l., 19821 and Apple Lisa and Macintosh Apple Computer Inc.,
19851 hove shifted the attention given to the user Interface lwues to the

forefront of the design process. The user Interface Is no longer considered

an 'add-on' component, but viewed as the single element that binds the

system and the user Into a cohesive whole.

To ensure a useful interface, several design considerations were

followed. These design considerations were.

- Familiar User's Conceptual Model

- Supportive Dialogue Mode

- Visual Fidelity
- Consistency.

Fm=llw' User's Concontual Model. A users conceptual model

defines the set of concepts that explain the behavior of the system [Smith
e ~ ~~~~ Ct.ansist2e]. ncepuy

*et. al., 1982-.248. Specifically the conceptual model:
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(I) defines the general form of the set of capabilities
percolvedby the user.

(2) gives the philosophy behind the system, Ideally In s
manner that the user Is both familiar with and
comfortable witl

(3) develops, In the users mind, a framework of the
system which the user should be able to associatewith and which he/she can learn, cm(iirenmd and use

to Interpret the system's behavior. [Bortino, 1IM5: 38-393

Newman and Sproull have likened the conceptual model to that of a

grammar for a foreign language. Their promise bein• like a foreign

grammar that defInes the rules of communication, the conceptual model

defines the way the user will perceive the interaction with the system.

Fluent communication Is achieved only when the model or the grammar

becomes second nature. The model Isnot perceived as a guiding Influence

but rather as being 'lnstalleo" in the mind of the user (Newman and Sproull,

l1979 4481

The development of the conceptual model can significantly Influence

the design of the user Interface. There we two basic approaches to the

development of conceptual models, Innovation and emulation (Betlno, 1985:

39L Innovation models exploit nw types of representational possibilities

In the user Interface. They Introduce new ways of thinking about situations

and new procedures for dealing with them. Emulation models, on the other

hand, emulate the current activities employed by the user In an existing

system. Familiar concepts, knowledge, and procedures are Incorporated Into

the user Interface. This usually makes the model more Intuitive and easier

eto learn
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The ALU prototype takes an emulation approach to the development of

Its conceptual mocl. Emulpting the current design process, the conceptual

model Incorporates as its central theme the Idea of constructing cockpit

layouts In a building block fashilo The building blocks -,re pro-defined sets

of cockpit components that actually represent those being used in the design

process. The procedures used and the cockpit components remain familiar to

the user. The user Is not required to develop a new mindset to Interact

effectively with the user Interface.

A convenient way of representing such a model Is via the use of an

object-oriented paradigm. The model Is viewed as a set of objects (cockpit

components) and a set of operations (selection and placement) that

manipulate the objects and Its environment (cockpit layout) [Newman and

Sproull, 1979:448; Hesrn and Baker, 1986:3301 Models based on such a

* paradigm provide an effective means of representing the problem space. As

Cox points out-

Objects are natural metaphors for model building In that
each Is a capsule of state and behavior, a virtual machine that
can be used as a computer-based executable Instance of a
corresponding entity In the user's problem domain. This
potential for close correspondence between computer and
problem domain can be useful In building Inexpensive,
understandable systems [Cox, 1984571

Such models allow the user to Interact directly with the objects of

interest without concern for the actual object implementation [Arora st. al.,

1985:465]. The user is not forced to Interact with the system In computer

terms (thus avoiding detailed procedural specifications) (Foley and Mcfath,

U1986: 16 but rather Inte3ts at the display level, where Ideas and concepts
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can be formalized and tried [elinert and Tanimoto, IN*: I 1. The objects

and associated permissible actions become the interface [Arora et. al.,

1985:4651 The distinction between de. 'qn and Implementation fades.

The perceived ability to interact directly with the objects lends Itself

naturally to the cockpit design process. Objects, In this case, rqpnifest

,Ae,43clvis as cockpit entitles. Operations are provided that allow direct

spatial manipulation of Individual cockpit entities and direct spatial and

structural manipulation of individual cockpit entity attributes. The actual

implementation of each cockpit entity is hidden from the designer, only the

entities behavior Is observable.

Accepting an object-oriented viewpoint allows the designer to

visualize the interface as a virtual cockpit display. Virtual In the sense that

a multitude of cockpit display types, consisting of many cockpit entities,

* can be created via the same Interface and methodology. The methodology

simply being the selection and placement of cockpit entities on the cockpit

display. Such a model provides the designer a familiar and workable

environment for cockpit display generation.

Suimortlve Dialoe Moade, There are two basic dialogue modes:

user-initiated and system-initiated [Singh at. al., 1983:561 The choice of

which dialogue mode to use depends on the Intended audience and the type of

Interaction desired.

User-Initiated dialogues require the user to Issue commands In order to

accomplish a task. The user Is responsible for memorizing command syntax

and issuing commands at the appropriate time and In proper sequence. Little

If any prompting Is performed by the interface. This mode of dialogue

* provides the greatest degree of flexibility but places an extra burden
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(command memorization) on the user. It Is best suited for expert users of a

system [Heam and Baker, 1986:3331

System-Initiated dialogues require almost no memorization. They

display all relevant Information pertaining to the task at hand and prompt

the user for command selection. They are best suited for novice users [Hearn

and Baker, 1986333] since they guide the user through the command

selection and sequencing. This type of dialogue relies on recognition of

commands rather than recall.

A system-initiated dialogue was chosen as the dialogue method for the

prototype ALC user Interface. System-initiated dialogues are better suited

than user-initiated dialogues for the user Interface requirements identified

In Chapter 2. Specifically, a system-initiated dialogue approach satisfies

the requirements for ease of use, minimal memorization, and ease of

learning.
System-initiated dialogues tend to be more novice-orlented than

user-initiated dialogues (Hearn and Baker, 1986:3331 They assume little, If

any, prior technical expertise on the part of the user, lending themselves

naturally for use by a large audience. A prime requirement of the ALC is

that it be usable by a variety of users, with different technical backgrounds.

It Is essential that the user Interface Is not tailored toward any specific

System-initiated dialogues minimize the amount of memorization

required by the user. All objects and commands of Interest are displayed

and available for selection. The user is not required to remember command

syntax or command sequencing. Relieving the user of this burden directly

Impacts the quality of the thinking (i.e. design) process.
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Studies have shown that -conscious thought deals with concepts In

short-term memory and the capacity of short-term memory is limited"

[Smith et. al.,1982:2601 By displaying available commands, short-term

memory is relieved of the burden of command recall and syntax formulation.

Thinking becomes easier and more productive as the user Is permitted to

concentrate on the creative aspects of the design process without being

burdened by the dialogue [Smith edi., 1982.260 The dialogue becomes a

mechanical device for Issuing actions without Impacting the conscious

thought (design) process [Bertino, 1985: 501

Learning Is also eased by system-Initiated dialogues. Learning In this

context, refers to the time It takes a user to become proficient In a

system's use, In order to perform productive work. This Is not to Imply that

the users needs to be proficient in all aspects of system use; they seldom

are [Rubinstein and Hersh, 198481 But rather, the user needs to know only

the subset of the system that directly Influences the task at hand. The time

It takes to learn these capabilities should be mlnimial. A general rule of

thumb, known as the '10 minutee rule, attempts to limit this learming time

to ten minutes. If It takes longer than ten minutes, the Interface should

probably be re-evaluated and porhaps redesigned.

System-initiated dialogues provide a viable means of satisfying the ten

minute constraint. Information needed to converse with the interface Is

always displayed, relieving the user of the burden of command syntax recall.
The user can experiment with commands and options immediately without

worrying about command syntax or key-in errors. Attention Is focused on

system understanding Instead of being divided among tasks. A semantic

understanding of the system (concepts and functionality) Is gained rather

than a syntactic (detail) [Shnelderman, 1983:651.

User Interface 41



System-initiated dialogues also aid in regaining proficiency in a

* system after an extended absence. It is desirable to have the user 'up to

speed" as soon as possible. Since the user has already developed a semantic

understanding of the system and its commands, the time required to become

proficient will usually be less than if the system were based on a

user-initiated dialogue. The reason being, syntactic knowledge is volatile

in memory and is easily forgotten if not frequently used" [Shneiderman,

1983:651 Semantic knowledge tends to be more system independent and

once "acquired Utho general explanation, analogy, and example, Is easily

anchored In familiar concepts and Is therfore stable in memory"

[Shneiderman, 1983:651 The stability of semantic knowledge allows a user

to regain profIclency faster and retain it longer.

Visual FideltLy Visual fidelity or'What You See Is What You Get

refers to the ability of representing a rendition of the actual output on the

display screen (Smith et. al., 1982:2641 In this application area the display

screen is the computer display that the user sees, and the output is an

actual cockpit display that the pilot sees.

Visual fidelity provides the user with a means of directly Interacting

with the problem space; seemingly by-passing the user Interface

(Shneidermanm, 1983:631 "The user operates directly on the data In a form

convenient to him 0ia. cockpt odJocts), not one imposed by the computer

(A.m co*)" [Harsiem, 1984:1031 (Italic phrases added by author). Cockpit

layouts are composed directly on the display screen and mapped directly to

the target cockpit display. The user's view of the display screen and the

cockpit display are inseparable.
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Innisto" Consistency in the user interface allows the user to

Interact with various parts of the system without having to change the

method of interaction. The user learns one method of Interaction as opposed

to several. A consistent interface reduces the amount of re-learning that

user must perform while switching between applications [Harslem,

1984,1051 It allows the skills, procedures, and concepts acquired in one

section of the system to be applied equally to other sections [Marcus,

1984241

The prototype ALC promotes consistency by providing a single user

Interface for all sections of the system. Commands are generic In nature,

thus allowing for a small set of commands to be used throughout. The

extraneous application-specific semantics of a command are stripped away

allowing the user to deal directly with Its underlying meaning [Smith et. al.,

1982: 2681. The actual physical interaction (object positioning and

selection, command selection) is performed via a mouse. The keyboard Is

used exclusively for textual Input only.

Table VII summarizes the design considerations which guided the

design of the prototype ALC user Interface.

User Interface Components

Based on the design considerations discussed above and the user

Interface requirements presented In Chapter 2, the user Interface design of

the prototype ALC can be satisfied by providing five components, the

keyboard, a mouse, windows, command bottons, and menus. A description of

each component and Its associated functions follow.
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Tale VII

User Interface Design Criteria

Criteria

p Emulation-Mode, models
SConceptuhl Model the-current design process

Dialogue Mode Sgstem-initiated

-isual Fidelity 'What You See is what
You Bet'

Consistencg Single User Inte,-face
- neric Commands

WM= The keyboard is an Input-only device used exclusively for

textual Input. Special characters, control character sequences, or command

sequences are Ignored by the user Interface. The user Interface only

recognizes Input from the keyboard when a request Is made for textual data

"iMomus A mouse Is used as the primary physical means of Interacting

with the Interface. The mouse serves as an extension (prosthesis) of the

user, allowing the user to point to a location on the screen and make a

selection.

Most mice available today support a number V buttons for object

selection. Often an application will assign different functions to these

buttons. The prototype ALC user Interface treats all Ibutons on a mouse as

a single pick device. No matter which button Is pressed, the result Is a
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simple pick/selection action. Restricting the function of the buttons aids In

the portability of the Interface and prevents the user from making a mistake

(i.e. pressing the wrong button).

Window Windows are rectangular regions on the display screen which

serve as the focal point for user Interaction. The user Interface supports

three types of windows, applications, option, and dialogue.

Application windows provide a medium for viewing and manipulating

objects. All objects (cockpit displays and symbols) that the user can

manipulate are displayed within application windows.

Option windows display representations of objects that are available

for selection. An active option Is indicated by highlighting the option

selected

Dialogue windows serve a multi-purpose role. First, they provide a

CM standard means of requesting additional Information pertinent to the
execution of a command (i.e. prompting for file name on a 'SAVE' ). Second,

they serve as a means of confirming the Intention of the user (i.e. queries to

Insure the user really wants to delete a file). Lastly, the dialogue window

Is used to Inform the user of any error conditions.

Application and option windows are classified as 'modeless' windows,

meaning that their presence does not require a response by the user. The

user Is free to interact with these windows as he chooses. On the other

hand, the dialogue window Is known as a 'modal' window. This window, when

displayed requires the next user response to be directed toward It. The user

Is forced Into a response mode. The user must satisfy the window prompt

before futher processing can take place. The mouse and the keyboard are

dedicated to Lhe dialogue window.
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SCommand Butoni Command buttons act as screen function keys. They

serve as a means of Issuing commands to the system. Only those commands

that are pertinent to the current processing are displayedL

MW Menus serve as another medium for comramnd Invocation Menus

consist of logically related commands, herein refered to as menu items.

The user Interface supports what we known as 'pop-up' menus. The

term pop-up comes from the way these menus we activated Initially, the

user only neos a menu title on the scree If a title Is selected, the menu

Items associated with that title 'pop-up underneath It The cursor can then

be moved over the desired Item for selection When a selection is made or

the cursor Is moved outside the menu region, the menu disappears.

Pop-up menus force the user Into a response mode only when they wre

activated. At which time, the Interface directs all user actions toward

,'• •menu selection. The user is required to mike a selection or cancel the menu

activation by moving the cursor outside the menu region. All other user

actions we Ignored when a menu Is activated Otherwise, pop-up monus

Impose no restrictions on user actions.

The user Interface has often been considered the "most difficult and

the least understood part of Interactive systems" [S1ngh et. al.,19•3:551

This chapter has presented the user Interface In two parts. The first part

described the design considerations that were adhered to in conceptual

design of the Interface. The second part described the actual components

that constitute the physical structure of the interface.
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The ALC prototype incorporates two distinct, yet similar, graphic

editors to enhance the design process (Figure 5). The Layout Editor, directly

supports the creation and modification of cockpit displays. The secon

editor, the Symbol Editor, supports the creation and modification of

Individual cockpit symbols. The editors wre similar In the methodologies

they employ, but differ on the view of the design process they present to the

designer. The Layout Editor allows the designer to view and manipulate a

design as a collection of spatially arranged cockpit symbols, while the

Symbol editor allows the designer to view and manipulate the Internals of

Individual cockpit symbols. The similarities and differences of these two

editors are presented In this chapteav.e
Editor Similarities

Currently, cockpit display construction starts with the design and

analysis of the cockpit layout on paper. When complete, the design Is

transferred to software experts for translation Into code. Depending on the

complexity of the design and the amount of new code needed to be generated,

the designer may not realize the Implementation of the design for weeks or

months after submission. To make matters worse, modifications to the

Implemented design could entail further delays. This process is very time

consuming and programmer-intensive. The designer's productivity is at the

mercy of the software development process.
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Lsgsut Editor

SýOols Editor,

Librarian

Figure 5. Editor Layer,

To combat this problem, 0he ALC prototype incorporAtes two types of
editors, the Layout Editor and the Symbol Editor. Both editors we graphics
based and object-oriented In nature. Their function Is to make the design
and analysis Ohas a more productive and enjoyable task by supporting the
bulk of the design activity In a responsive,, Interactive graphics
environment. The goals of these editors ae to free the designer from the
tedium of designing cockpit displays on paper and reduce the need for
software experts for design Implementation. To accomplish this, the editors
promote the Interactive design of cockpit displays and symbology from
pre-def ined classes of cockpit symbols. The Layout Editor supports the
design of cockpit displays,, while the Symbol Editor supports cockpit
symnbology construction.
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Although both Sditors perforM diffrerent. tasks, there are four common
reqfrments that both must uS~Ort

- Graphic interaction,
- Iterative Development,,

-Evoluionarvy Design,
- bperimentat Ioft

Bmiif ImtmtiosThe piecess of designing a cockpit display Is a
spatially oriented activity. It relies heavily on the use of graphic imae for.
representing cockpit and real-world objects. Both editors exploit the use of
graphics as the main medium of Interaction. All editing is performe.d on
graphic entities versus the use of textual inform~ation. The editors wort
directly In the mode most natural to the design process. graphics.

IteratIve Oevaimgnen Iterative deve lopment Is a process by which
designs wre continuously evaluated and modifiled 'to satisfy design
requrements. Both editors take an an active role In supporting this
requirement. Both editors msist the user by providing the facility for
creating new designs,, modifying existing designs,, and supporting the rapid
generation of alternative design.

The primary function of both editors Is the creation of new cockpit
designs. Designs we crested by selecting and wroanging (inserting)
pre-defined objects on the display screen to satisfy a design requirement.
Besides Inserting objects, both editors also suppor object deletion and
repositioning. Final designs, or work In progress, can be saved for future use
or discarded
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In addition to creating new designs, the editors also support the

* capability of modifying existing designs or generating alternative

representations of existing designs. Modifying a design usually Involves the

inserting or deleting objects from a layout, then saving the result. This in

affect destroys the original design. Creating an alternative design

representation is a non-destructive editing procedure. The original design

serves as a template from which objects can be added or deleted. The

modified original Is saved as a different design, leaving the original design

Intact

Evolutimorn Deoi"n The premise behind an evolutionary design

"approach Is to eliminate the practice of 'reinventing the wheel' every time a

design Is created. To accomplish this, the ALC prototype promotes the

creation of designs from pre-existing sets of cockpit symbols. Designs can

then be constructed In a building block fashion from these symbols. The

editors directly support this methodology by allowing the user to manipulate

these symbols as discrete entities; they can be selected, positioned, and

deleted from the display. The user never deals with anything conceptually

simpler than an object.

Eperimentatiopn Both editors actively support experimentation. They

provide the designer with the capability of experimenting with different

design layouts without committing the work to a final design. To support

experimentation, both editors allow the user to undo the last operation

performed, erase the entire design, and restore the design to Its original

form.
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Figure . Generic Editor iayout.

The similarities of the two ediLtors are best delineated by identifying the

functional areas that comprise each editor. This Is conveniently done by

illustrating the generic display form common to both editors (Figure 6). The

display consists of three functional areas; the option area, the work area,

and the command area.

The option area of the display, maintains a list the objects that are

currently available for selection. The objects are pictorially displayed in
miniature form. The process of object selection Is Identical for both editors.

Objects we selected by positioning the cursor over the desired object

and pressing a mouse buttorL The selected object Is 'made active' and Is

highlighted to indicate selection. The next time the cursor Is within tli work

area and a mouse button pressed, the selected object will be drawn. The

* selected object remains active until another object Is selected or the work
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area Is cleared This allows the user to add multiple Images of the selected

. object on to the work area without having to reselect the object each time.

The second functional area of the display Is the work area. This area

serves as the dusigners chalkboardo Designs wre constructed and displayed

within this region. Within this woo the user can perform three basic

functions; object Insertion, object deletion, and object repositioning. The

process of Insertion Is unique to the editor used and will be cover in detail In

later sections, Deletion aid repositioning, however,, we identical to both

editors and will be addressed here.

Deletion is the process of removing an object f'•om the work area.

Objects wre removed In a manner analogous to option selectlon. First the

object is selected, then the l'rash' button Is selected. This caue the

selected object to be removed from the work area and the work area to be
redrawn.

Repositioning is also similar to option selection. First the object Is

selected within the work ares, then the cursor Is reposltloned and a mouse

selection Is modb. The selected object Is erased from Its original location

and redrawn at the new. If the new location Is outside the work area the

object remains In its original location.

To aid in the deletion and repositioning process, an extent box Is drawn

around the selected object The extent box serves to identify exactly which

object Is selected. This Is helpful when multiple objects overlay each other,

or are positioned In close proximity to each other. The user Is not left

guessing which object was actually selected, but can directly determine by

visual Inspection. Besides Identifying an object, the extent box also tracks

the cursor while Inside the work area. This provides the user with a spatial

Sreference for repositioning.
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The third area of the editor displays is the command sectior All. commands that effect the editor We listed here. Commands are displayed as

command buttons. The user selects a command by positioning the cursor over

the desired button and prssIng a mouse button. The editors Interpret the

selection and perform the desired actiort

There -are Wseveral commands that we Identical to both editors. Thes

commands we listed below with an accompanying descriptlon. Commands

unique to an editor will be presented under that editors description.

New: Resets the editor by clearing the current desilgn If the current
design Is not saed prior to issuing this command, the editor
prpmpts to ave It.

Old: Retrieves an existing design. If the current design Is not saved
prior to issuing this command, thtedltor prompts to save It.

Savt Saves.the current design. If this Is a new design the user Is
prompted for a title, otherwise the design Is saved under its
original title.

SmaAt Soav the current display under a different title.

Undo: Undoes the last operation p omed In the work area.

Clear. Clears the work are and de-activates the currently selected
object

Revert: Restores the current design to Its original content. If the
current design is new then this command has no effect.

Quit: Terminates the editing session and exits the user from the
environment

Although the editors are similar In many respects, there are Important

Sdifferences that distigulsh the two editors. These differences are

presented In the following sections.
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Fig"r 7. Typical.LayoUt Editor Formt.

0 ~The Layout Editor serves u the sole means of creating and modifying
cockpit layout designs Layouts w constructed InIa buildIng bIock faIhion

from Sets Of predefined Cockpit components Or SymOILs The user simply
selects the desired component, from an availale option list, and places It

on the cockpit layout A typical format of the Layout Editor Is provided In
Figur 7. The functional capabilities unique to the Layout Editor are
discussed in the following paragraphs.

The option area of the Layout Editor differs from the Symbol Editor In
one major respect; namely, the types or objects displayed for selection.
Because the Layout Editor Is Intended to be used to create a multitude of
different cockpit layouts, the objects available for selection will vary with
the design being constructed.
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The Layout Editor handles object Insertion differently than the Symbol

Editor. Basically, object insertion is based on a technique known as
'dragging. Dragging is an interactive technique for dynamically moving an

object under cursor control. Objects selected In the option area are

dragged into the work area, positioned, then inserted by pressing a mouse

button. To aid the user In object placement, an extent box, defining the

object's size, Is drawn around the cursor. The extent box tracks the cursor

as It Is moved around Inside the work area. When the object Is Inserted,

the extent box Is removed.

The Layout Editor supports two unique commands; namely,

Info: Displays a narrative of the selected object This command is
Ignored by the editor If there Is no object selected.

Set Up: Provides a means of accessing the cockpit symbology libraries.
r The user Is provided with the options to select new classes of

symbols, remove current classes from the display, or Invoke the
Symbol Editor to modify a cockpit symbol.

Symb-l Editor

The Symbol Editor provides the user with a means of creating and
modifying cockpit symbology. Symbols are created in a manner analogous to

cockpit layouts, except the range of options to ctiose from is limited and

each object has Its own unique method for being inserted into the work area.

Figure 8 illustrates the display format for the Symbol Editor.

Unlike the Layout Editor, whose options are interchangable sets of

cockpit components, the Symbol Editor maintains a single set of options.

~ This set consists of six graphic primitives: point, line, rectangle, circle,

polygon, and text. All cockpit symbols are constructed from this set.
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Figure a. Typical Symbol Editor Layout.

The method of Inserting (placing) objects In the work area also differs
* between the two editors. In the Layout Editor,, object placement Is

determined with a single mouse selection. This works for all objects.
Object placement In the Iymbol Editor Is a bit more complicated. Each
graphic primitive (object)I because of Its unique geometric form, requires a

different placement method. For example, points ae positioned In the work

area with a single mouse selection, where as, lines, rectangles, circles, and

polygons, require multiple Insertion points to be defined. The methods for

Inserting these primitives will be presented next.

Defining multiple points for primitives Is accomplished using a

'rubberband' technique. Basically, rubberbanding Involves defining a starting

point for an object, followed by moving the cursor to define other points.

As the cursor Is moved, the object Is streched between the Initial point and

the cursor's current position. This dynamically alters the shape of the

, object providing the user with Immediate feedback about the object's shape.
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'q Using this technique, procedures for adding lines, rectangles, circles, and

polygons can be defined.

Lines, rectangles, and circles are added to the work area by defining

two points that bind the primitive to the work area. In the case of the line

primitive, the first point deflnes the starting point while the second point

defines the end of the line. The rectangle primitive uses the first point to

defines its lower left hand corner. The upper right hand corner Is then

defined by the second point The circle primitive uses the first point to

define Its origin, and the second point to define Its radius.

Polygons differ from the other primitives, In that they require multiple

points to define their hapes. Polygons are drawn by specifying a series of

connected line. Each line forms an edge to the polygon. The user needs only

O to specify the starting endpoint once, afterwards the endpoint from the

previous line Is used as the new starting endpoint. Polygon drawing Is

terminated when the user selects a point outside the work area or another

option Is selected.

Text is the only primitive that requires the use of two Input devices,

mouse and keyboard. The mouse Is used to select the start point In the work

area where the text Is to be inserted. The keyboard Is then used to enter the

actual text. The insertion point must be selected before the text is entered,

otherwise the Interface will Ignore any text Input

The Symbol Editor has one command unique to Its processing which Is:

Return : Transfers control back to the Layout Editor.
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sn
Two graphic editors, the Layout Editor and the Symbol Editor, ae used

to support the design proceM The Layout Editor Upports the creation and

modification of cockpit layout displays, where a the Symbol Editor

supports the creation -and modification of cockpit symology.

Both editors have In common mveral functionul similritles; such as,

Vraphical Interaction, Iterative dwelopment, evolutionary design, and

experimentation. The editors differ at the level of design abstraction at

which they are employed. The Layout Editor Is used at the highest level of

design abstraction, I.e. cockpit layout editing. The Symbol Editor at the

lowest level, i.e. cockpit symbology editing. Together they provide the

design tools needed to construct cockpit layout design In a dynamic,

interactive mode.

4
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0 Dmilm

To make the prototype ALC a truly functional and nUppo•lve

envlmwnmt f• the duiOn of €oc•lt layoute, a fzc!llty fee eterlng

retrt•lnOcockplt .layouts.and..•plt aylrd•loW 18 nomlN $•ch o facility

-would•ellmlMte the, proctl• of 'rt-lrNentlhO the wheel' every time e new

{lesiOn Is requesto{L The deslgmr would have awlllable, on-line, e means of

accessing existing cockpit layouts and aymbMoW from which the new

design could take root. The l•OLotyl• ALC • such o facility, namely,

the Librarian (Flgur• 9). The LIIxarian 18 an on-line, archival mechmtam.

Both cockpit layouts and cockpit aymi•low are mJpporte(L This chapter

describes the deslOn of the Librarian In terms of how layouts and aymbo, I|

are stored, how they are retrieved, and problem relating to mlstency.0
Obleet Stm

All ®Jects for the N.C prototype are st•ed In IIINrle• The LIIxlrlan

maintains two separate Ilbrerles; namely, the Layout Library and the Symbol

LIIxTy. As the names Imply, the Layout LIMlry Is used for the archival of

cockpit layout designs, and the Symbol Llbrlry archives oil the cockpit

symbols used In the system.

Llbrerles are subdivided Into clmseeL Clemewa ere Ioglcnl groupings of

objects. Objects ere mmlgned clams based on their type. Par•.ltlenlng

IlbrTles Into classes reduces the overall complexity of the library,

allowing for efficient and rapid access of Individual objects.

0
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Figure 9. Librarian Layer.

The Layout Library Is partitioned Into classes based on cockpit display

types. Figure 10 illUstratet a typical-Laygut Librar, partitioned into three

0classes, Aircraft, HUD, and Threat. Each clam in a Layout Library contains

the actual cockpit layout displays asoclated with a particular class type.

For example, the class HUD contains three HUD layouts.

The Symbol Library it very similar in structure to the Layout Library. It

too Is partitioned into clases, but the partitioning Is based on symbol type,

not layout type. Each class In the Symbol Library Is further partitioned into

relations. Relations are groupings of slmilar, yet different cockpit

components. They are similar in that they are clamsfled under the same

class, but differ In content A relation's content Is composed of Individual

symbols defined In the clasms symbol families. Symbol families are the

fundamental symbol gopings in the library. Each family contains

permutations of a single symbol type. For example, the family Flight Path
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Figure 10. Typical Layout Library.

*lMarker contains different representations of a flight path maoter. The

represntations differ, but they symbolize the same thlng Figure II

illustrates a typical symbol library.

The symbol library shown In Figure I I Is partitioned Into three clasm;

Aircraft,, HUD, and Threat These clasnss should not be confused with the

classes defined In Figure 10. Although they have the same names, they are

not the same. The classes In Figure 10 represent logical groupings of

cockpit layouts, where as, the classes In Figure II represent the logical

groupings of cockpit symbols found on different types of layout displays.

For example, the symbol class HUD contains symbols relating to the

construction of HUD type displays. It would not contain symbols such as

aircraft silhouettes or armaments. These symbols would most likely be

contained within the Aircraft class.
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Figure 11. Typical Symbol Library.

Each class In the Symbol LIbrary. Is In turn, partitioned Into relations.
The class HUD contains three relations. HR- 1, HR-2. and HR-3- Each relation
Is composed of symbols defined In the HUD class symbol families. These
famnilies, listed left to right In Figur II are,, Flight Path Marker, Pitch

Ladder, Missile Aim,, and Aircraft Reference. These families of symbolsI
define all the HUD symbols currently available for use In HUD layout

* construction.
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Cockpit layouts and symbol ware retrieved from the libraries by the

Layout Editor and the Symbol Editor, repectively. The Layout Editor allows

the user to access both layout designs and symbol relations. Symbol

relations are maopped directly onto the Layout Editors display as option

wlndws. The Lyout Editor has the capability of modifying the layout

disip oaly. It comOt directly modify the contents of the option window

(i.e. symbol relation). Additions or modifications to a symbol In the option

windDw can only be performed via the Symbol Editor.

The Symbol Editor can directly access symbol relations or families.

All modificatlaiw to relations we based on the content of the Individual

families. In order to add a symbol to a relation that symbol must first be

defined within a family. Modifications to symbols are also performed at the

family level. Deletions we poss ible at both levels. Deleting a symbol from

a relation simply removes It from that relation. Deleting a symbol from a

family removes the symbol from the system.

Besides being able to store and retrieve cockpit layouts &no -ymbolkqy,

the Librarian Is also tasked with the responsibility of maintaining

consistency between the two libraries. Inconsistencies between the two

libraries has the possibility of developing when ever a cockpit symbol Is

modified or deleted. For example, If a symbol Is deleted from a symbol

family, Its removal has the possibility of effecting all relations that use

the symbol and all cockpit layouts that use the relation. The effect of
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removIng a single -symbol results In a propagation of ,thalami tiwoughout the
entire system If the Librarian does not support active consistency

checking, the Integrity of the both libraries cannot be guaranteed.

The Llbrarin Is an on-line,, archival mechanism that supots the

storage and retrieval of cockpit layout designs and cockpit iymbology.

"Layouts and symbology are stored In separate librries Thes libraries'are

partitoned, based on layout and-symbol, type Into logical groupi•gs called

classes. Each class within a library contains the actual cockpit object (iMe

layout or symbol).

All classes 're accessed via one of the two editors supported by the.liALC prototype. The Layout Editor allows direct acens to cockpit layouts

and Indirect accens to symbol relations (option window). The Symbol Editor

provides a mens of adding, deleting, and modifying cockpit symbology.

Changes to cockpit symbols has the potential of creating Inconsistencies

between the two librarieL It thus becomes critical that some type of

active consistency checking Is performed by the Librarian to ensure layout

and symbol Integrity.
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* ,yl I. IhnimmntL

Implementation Is the process of mapping an abstract representation of

a problem (i.e. design) Into a concrete, functional model. Three areas of the
ALC prototype design were Implemented In this thesis, namely; hardware,

environmental, and the application Itself. Hardware Implementation deals

with defining the actual graphics system on which the ALC prototype Is

hosted. Environmental Implementation deals with the programming

environment In which the ALC prototype Is to functlon. For this thesis effort

an object-oriented environment was chosen Finally, application

implementation is the actual implementation of the ALC prototype Itself.

Each implementation phase will be discussed In detail In the following

e sections.

The ALC prototype Is Implemented on a Raster Technologies Model

One/25 graphics system. This system was chosen for Its high resolution

display, interactive capabilities, and full availability for this thesis effort.

The description of this system is divided Into five areas, display

technology, Input devices, output devices, storage and processing, and

software drivers. The first four areas correspond to the hardware

requirements quidellnes provided In Chapter 2. The actual components that

comprise these areas are Illustrated In Figure 12. A description of the

software drivers needed to make all the hardware components work is also

provided.
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Figure 12. ALC Prototype Hardware Configuratlon.

D1inlgy Technolog. The Raster Technologies Model One/25

employs the use of a high resolution raster display. The Model One/25

supports two levels of resolution, 512 x 512 and 1024 X 1024 pixels. In

addition, the Model One/25 Is capable of displaying over 16 million colors In

the 512 x 512 mode. The high resolution and color capabilities of this

display make It an excellent choice for hosting the ALC prototype.

Input l.vicja. The Model One/25 currently supports two Input

devices, an alphanumeric terminal and a graphics tablet with a mouse. The

alphanumeric terminal Is not used as an Input device. It Is used primarily to

Issue system commands to the Model One/25 and to perform system

Initialization (See Appendix A). Inputs from the alphanumeric terminal are

Ignored by the ALC prototype software.

Implementation 66



The graphics tablet with mouse was used exclusively as an input device

O for the ALC prototype. All user actions (such as cursor movement and

selection) are conveyed to the software through the mouse. The particular

mouse used supports 16 different function buttons. All but one button

(button 0) Is used as simple pick devices. Button 0 Is dedicated to providing

the cursor with the current mouse position (this Is a hardware quirk of the

Model One/25). Selecting this button has no effect on processing. The other

buttons when pushed, function as simple pick devices, causing a selection

event to be registered In the system event queue. This allows the

application software to query the event queue and process any pending

events.

Outeut DhvxaiL The Model One/25 currently does not support output

devices other than the display screen.

AProcesmslia and StorLa2 . The processing capabilities of the system

are divided between two systems, an Independent host computer and the

Model One/25 display processor. All application software Is developed,

stored, and executed on the host computer, while all graphic operations are

performed on the Model One/25. The host computer performs the actual

computational tasks required of the application, passing off the graphic and

Interactive tasks to the Model One/25. The Model One/25 serves as an

intelligent graphics terminal, Interpreting and performing graphic

commands sent to It by the host computer.

The host computer was a VAX I 1/785, operating under BSD UNIX version

4.2. Communication between the VAX and the Model One/25 was conducted

over a 9600 baud channel, routed through a local area network. The channel

bandwidth seemed sufficient when the VAX was not heavily used. However,

Interactive response times were degraded as VAX usage Increased.
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bzlQUICakI lU A problem often associated with hardware
*configurations a described above, is the lack of reliable device drivers to

communicate with the graphics hardware. This thesis was not without such

a problem. Device drivers are the actual software modules that allow a host

system to interact directly with a piece of graphic hardware. They function

as interpreters by translating host coamm ds Into commands

understandable by the graphics harlware. The device drivers Implemented

in this thesis, translate graphic commands Issued by the application

software Into ASCII character strings representing the hexideclmal value of

a Model One/25 operator. This string was then sent over the network to the

Model One/25 where it was interpreted and the appropriate task performed.

Appendix F provides a detailed description of the device drivers that were

Implemented.

O Obgelt-Otriented System

This section describes the graphical object-oriented environment that

was developed and Implemented as part of this thesis effort to support the

Implementation of the ALC prototype. This environment was based on

object-oriented concepts derived from such systems as Smalltalk [Goldberg

and Robson,19831, Traits [Curry and Ayers, 1984, Object Oriented

Pre-Compiler (OOPC) [Cox, 19831, and Icortlaker [Kramer, 19841 The intent of

this environment was not to develop a 'production quality' product, but

rather a test-bed in which object-oriented concepts could be applied to the

ALC prototype effort. With this In mind, this section will proceed In the

following direction, first object-oriented concepts will be discussed in

• general terms to familiarize the reader. Next, the applicability of
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object-oriented concepts tographic systems will be presented, followed by

a description of the actual environment that was Implemented.

QbJect-Ot lnted Cmnceant The distinction between traditional

porming environments and object-oriented environments deals with the

way the environment's computational model Is defined. A computational

model describes how the various entities In an environment interact to

perform a computational task. In both environments the tasks or goals are

identical; the difference lies In the definition of the entities that Inhabit

the environment and their method of Interactiorn

Traditional programming environments are based on an

operator/operand model [Cox,52: 19841 This model views the computational

process as being operations performed on operands The environment is

divided Into two distinct sets of entities, operators (procedures) and

operands (data). Operators are c •isdered active entities In the environment

that manipulate the passive data Items passed to them. Operands are

passive In nature, and re only changed by an operator.

Interaction between these entities Is usually supported by some type of

direct Invocation mechanism (I.e. subroutine or procedure call). Operators

are directly Invoked to manipulate a set of operands. The Invocation process

in effect establishes 'how' something should be done. This usually places

restrictions on the type of operand that an operator can manipulate. This, in

turn, can populate the environment with sets of operators that conceptually

perform the same operation on different data types.

An alternative to the operator/operand model Is the message/operand

model. This model forms the basis for object-oriented environments.

* Unlike the operator/operand model, where data and procedures are viewed as
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separate entitles, the messoge/operand model merges the two Into a single

*entity referred to as an object. The object serves as the focal point for all

computations. Since objects combine the properties of operands and

operators, they we capable of being manipulated as well as being the

manipulator [Robson, i981:761

Objects Interact via a message passing paradigm. A message Is a

request from one object to another to perform one of Its operations. The

key word In this description Is 'request'. The receiver of the message

determines 'how' It will handle the message, not the sender. The sender can

only request 'whaV should be dot,., It has no control over 'how. Invocation

Is performed Indirectly as opposed to more traditional direct Invocation

methods. Message p•ssing has a direct impact on the number Of operators

needed to perform similar tasks. Instead of using a set of different

messages (i.e. operators) to Invoke a similar operation In a set of different

objects (i.e. operands), message passing permits Identical messages can be

sent to all objects Invoking a behavior unique to that object. The

environment becomes more compact and consistent, since a single method Is

used to Invoke computations Instead of a set of methods.

The reader should refer to Appendix B for a detailed discussion of

terminology and characteristics associated with object-oriented systems.

Granhic Systms The use of object-oriented concepts Is not new to

graphic systems. Perhaps the earliest system to employ a subset of these

Ideas was Sketchpad [Sutherland, 1980]. Sketchpad was one of the first

systems to provide true Interactive capabilities. Its similarity to

object-oriented systems of today Is found In Sketchpad's definition and

9 creation of graphics entities (objects).
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Sketchpad presented two views of objects. The first, and most

* intuitive, was that of a graphic entity. This entity took form on the display

screen and was capable of being manipulated via interactive means.

Sketchpad supported basic geometric objects such as lines, circles, and

points.

The second view was actually an Implementation abstraction of the

first At the Implementation level, objects were quantified as being sets of

variables and constraints. Variables defined the objects form, while the

constraints modified the form to satisfy a given design or geometric

requirement. The association of data and methods (constraints) for

modifying that data Is very similar to concepts found in most

object-oriented systems today.

Besides a similar object definition, Sketchpad also employed an

AW 'Instantiation' technique to create objects. Objects were Instances of a

'master picture'. A master picture wN an original description of a specific

object. Objects were instantiated by duplicating the master picture, then

modifIng the variables to describe the new object (instance). This Is very

similar to the class concept.

Sketchpad greatly influenced the Interactive nature of graphic systems.

However, the object-oriented concepts It fostered did not gain wide

acceptance. This may have been due the Interactive capabilities

overshadowing these Ideas, or perhaps the object-oriented model Itself

was not complete enough [Rentsch,1982:55]. In either case, the

object-oriented concepts that did survive were confined to the portrayal

of graphic Images on the screen, defining graphic images In terms of

variables, and duplicating Images via Instantlation.0
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The majority of the graphic systems in use today (GKS, CORE, PHIGS,

etc) have been implemented within traditional programming enviroments.

FORTRAN, because of its early use, seems prevalent as the implementation

choice, however 'C' [Denny, 19861 and Ads [Hanson, 1986] bindings have also

become available. These systems embrace only the object-oriented

concepts promoted by Sketchpad and little more. The idea of combining data

with procedures is-still not Implemented

It hasnt been since the development of true object-oriented systems,

such as Smalltalk, that graphic systems have finally embraced the concepts

associated with object-oriented systemsL Several object-oriented

graphical Implementations are described in current literature [Gol"erg and

Rcbson,19831, [Wisskirchen,1956], [LubinskI and Hutzel,19841, and

[Reiss, 1 9861

Sunort Environment The graphical object-oriented environment

Implemented as part of this thesis, provides a flexible, yet consistent

framework for defining a wide range of graphic metaphmrs. This section

describes these metaphors without providing the detailed implementation

concerns. The reader should refer to Appendix C for implementation details.

Currently three views of graphics plogramming are supported They are

primitive, user Interface, and application views. The primitive view

provides the f oqanatlon of the system. It supports the essential, Inseparable

graphic constructs ttsat allows other views to be built. The user Interface

provides the Interactive mechanism for the environment. It Is through this

level that the user can directly manipulote the system. The application

view ties together both the primitive and user Interface views to satisfy a

user's requirement. It Is the most dynamic portion of the environment,
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allowing multiple applications to be constructed from primitive and user

0 Interface components.

Each view provides a different level of development abstraction, yet

they are handled by environment in the same, consistent manner. The user is

never forced to jump abstraction levels when developing software. This

allows the user to mix abstraction levels freely without being burdened

with the implementation details. A consistent abstraction is maintained by

making all components in the environment objects. All components of the

environment are accessed via a consistent message passing schema,

regardless of the abstraction level they represent

Primitive View. Primitives form the basic foundation of all graphic

environments. They are the simplest objects in the environment serving as

building blocks for more complex objects.

Currently six classes of primitives are supported; namely, Circle, Line,
q Point, Polygon,, Rectangle, and Text. Each class defines a unique geometric

figure and methods that are unique to its form. All graphic images

displayed on the screen are combinations of one or more of these objects.

All primitive classes Inherit their attributes from a Graphics Primitive

class. This class gives each primitive, characteristics common to all

graphic objects. Specifically, the Graphics Primitive class provides the

follow ing attributes:

cx,cy: Center location of the object.

color Defines the objects color.

solid fill: Indicates if the object is solid or not.

draw mode: Indicates how the object is drawn on the screen.

area: The objects area on the screen (in pixel units).

extent: Defines the objects rectangular extent.
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In addition to the classes defined above, a composite class Is also

* supported. The class, Composite, provides Instances that are composed of

Instances of other primitive classes. In other words, the Composite class

provides the capability of constructing complex graphic Images from simple

graphic primitives, yet the resulting graphic Image is treated as a single

entity. For example, one could Instantiate an object call Aircraft. Aircraft

would refer to a single entity, but In actuality Aircraft Is a composite of

more general parts (i.e. objects) such as Fuselage, Wing, Tall, etc. Together

all the parts define an aircraft

Composite objects may also contain other composite objects. For

example, the object 'Wing could actually be a composite object consisting

of more simpler objects such as Aileron and Flap. Together these simple

objects define Wing, which In turn Is used In the definition of Aircraft. This

*• nesting of composite objects Is very similar to graphic structures

Implemented in graphic modeling environments such as PHIGS [Abi-Ezzi and

Bunshaft, 19ga61 The reader should refer to Appendix D for a detailed

description of the composite and graphic primitive classes.

User Interflae Currently, there are seven user Interface classes
supported by the environment. These classes are Command, Cursor, Dialogue

Window, Display Window, Option Window, and Pop-Up Menu. Each class

provides a unique way of allowing the user to Interface to the environement.

A functional description of each class follows.

Command: Supports the display and selection of commands
via a command button.

Cursor. Handles the form and visibility of the cursor.
i , Dialogue Window: Provides a consistent means of querying the user. 71
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Display Window: Provides an Interactive mdium for display and
manipulation of primitve and composite objects.

Mouse Handles all mouse functions, such a, tracking and
event queuin;

Option Window: Provides a standard way of presenting objects

for selection.

Pop-Up IlefV Dyanmic medium for command selection.

A detailed description of each user interface class I provided In

Appendix D.

figgiaui The final area supported by the environment Is the

application. An application is the actual task or requirement that the us

Is attempting to satisfy. Applications ae lupported by assemblIng together

various components from the primitive and Uwer Interface classes These

* classes should support all the components needed to-buildian application. If

they don't, a new class should be constructed, rather then Implementing the

capability within the application Itself. This will not only expand the

number of clams available for application development, but will also

provide consistency within the environment. Software development

becomes the process of creating classes Instead of programs.

Applications are viewed as master objects controlling the Interaction

of subordinate objects. They do not Impart any new capabilities to the

environment, rather they simply rearrange existing capabilities (classes) to

perform new tasks. This is similar to a 'tinker-toy' set. The components of

the set constitute the environment; how they we put together determines

the application. This same metaphor can also be applied to the cockpit

design processI
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* The environment was originally Intended to support three applications,

Layout Editor, Symbol Editor, and the Librarian. But because of Its generic

nature, It should be possible to support a multitude of different

applicationsL

The ALC prototype consists of four separate but Interrelated

components, namely; the user Interface, Layout Editor, Symbol Editor, and

the Librarian. Implementation of all four components was beyond the scope

of this thesis effort. As such, a concerted effort was made to demonstrate

the feasibility of the ALC concept by Implementing the user Interface and

Layout Editor.

It was felt that the exclusion of the Symbol Editor and the Librarian

would not significantly Impact the primary goal of the ALC prototype, which

was to demonstrate the feasibility of Interactive cockpit display

generatlon. Those capabilities supported by the Symbol Editor and Librarian

(i.e. symbol construction and archival) could be Initially emulated within the

Layout Editor, with the understanding that a complete Implementation of the

ALC prototype would entail a detailed Implementation of the Symbol Editor

and Librarian. With this In mind, the remainder of this chapter will focus on

presenting the implementation of the user Interface and the Layout Editor.

User Interface. The user Interface was Implemented more as a part

of the support environment than as a part of the ALC prototype Itself. The

functions and capabilities of the user Interface tend to be more generic In

0
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nature than application specific. The user Interface iS more of a 'kernelr

* thin a stand-alone'applicatIon.

LrMLut Edltr. The purpoM of the Layout Editor Is to support the

creation and subsequent mdlif ication of cockpit layout designs. The Layout

Editor currently supports three cockpit layout types, aircraft oratance

loading, basic HUW design, and threat situation displays. These types were

chosen because they represent a diverse range of possible applications to be

supported by the AL.C. The Layout Editor Is currently limited to three layout

types due to the lack of librarian support Because the Librarian Is not

Implemented, It became necessary for the Layout Editor to emulate a

primitive librarian system. The primitive library Is Intended only for

demonstration purposes, It Is not Intended to be a fully functional library.

When the Librarian Is finally Implemented and Integated with the Layout

Editor, the Layout Editor should be able to support an unlimited number of

cockpit layout types

Besides supporting only a limited number of layout types, the number of

symbols defined for each type Is also limited. Each symbol associated with

a type must be hardcoded to that type. If the user wishes to add, delete, or

modify a symbol, an off-line change to the software definition of the

symbol Is required. Again, this Is directly related to the lack of a symbol

editor. Once a symbol editor is Implemented, It should be possible to modify

a cockpit symbol while on-line, for any of the layout types in the library.

Although the Layout Editor suffers from the direct lack of support of

the Symbol Editor and Librarian, the minimal capabilities these components

provide, are emulated within the Layout Editor. The Layout Editor presents a

* complete picture, In and of Itself, even without the Implementation of the
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Flgure 13. Example of On Aircraft Ordnance Loading Layout.

Symbol Editor Wnd Librarian. The Layout Editor Is best Illustrated by

examples of the actual layout types Luppported.

AICA t ftdna La" The first layout type supported by the

Layout Editor provides the designer with the capability of configuring

different types of aircraft with different types of ordnance. Currently two

types of symbol classes compose this layout type; namely, aircraft

silhouettes and missiles. The aircraft sllhouette class currently contains

the figures of three aircraft; F-4, F-15, and the F-16. The missile class Is

composed of four different types; Harm, Maverick, Sidewinder, and Sparrow.

With these two symbol classes, the designer can construct aircraft

loading displays similar to Figure 13. FigWe 13 Illustrates an F-15

configured with four Sparrow and one Maverick missile.
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Figure 14 Example of a Simple HUD Layout

HU.Duaoiga The Layout Editor currently supports a primitive MUD
desigh capability, Only a single symbol class Is provided for Component
selection. This class contains the following symbols; f light path marker,
angle of attack error Indicator (aoa). aircraft reference symbol, inroftial
landing system .ls) bars, missile aiming rectile, and pitch ladder. Figure

14 shows a possible MUD created from this class. The MUD In Figure 14
contains a flight path marker. aoa error Indicator, aircraft reference
symbol, and pitch ladder. When the Symbol Editor and Librarian are
implemented, It should be possible to have Individual symbol classes for
each of the symbols shown In the current class. This would provide the

designer with an Interactive means of experimenting with different HUD

representations.
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Figure 15. Example of a Threat Situation LayouL

Threat Sit•atlin The last type of layout supported by the Layout

Editor Is the threat situation layout Threat situation provides the pilot

with a 'birds eye view of the ground threats for a particular region. From

SUCh a display the pilot can qUiCkly Identify Potential hazards and plan

evasive actions.

The threat situation layout supports three symbol classes; terrain,

surface to air missiles (SAM), and anti-aircraft (M). The terrain class

provides a single map for selection. The SAM class represents threats as

circles. The size of the circle displayed depends upon the threat range of

the SAil selected. Inscribed within each threat circle Is a number Indicating
the SAM type. The same representation holds for AA. except M threats are

represented as octagons.

Figure 15. Illustrates an example of a threat situation display. This

display cont31ns two SAM sites and one AA site.
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It should be remphsIzed that the current limitation of three layout

O types Is solely a result of not Implmnenting the Symbol Editor and Librarian.

More layout types could have been added to the Layout Editor, but is was felt

that the current layout types justly demonstrate the Layout Editors

capbilitles.

This chapter has presented the Implementation of the ALC prototype.

The prototype was Implemented in three phases; hardware, support

environment, and the actual application.

Hardware Implementation dealt with defining the hardware

environment that the ALC prototype was hosted on. It Is currently supported

by a Raster Technologies Model One/25 graphics processor.

A graphical object-oriented environment was Implemented as a part of

this thesis to provide a flexible foundation for the actual Implementation.

Object-oriented concepts, derived primarily from Smalltalk, shaped that

Implementation

Implementation of the ALC prototype was originally targeted to Include

the user Interface, Layout Editor, Symbol Editor, and the Librarlan. Such and

effort was soon discovered to be beyond the scope of a single thesis.

Because of this, a functional subset of the ALC prototype was chosen for

implementation This subset, conisisting of the user interface and Layout

Editor, encompasses the essence of the ALC prototype effort by providing

the capability for constructing cockpit layout designs. The Layout Editor

currently'supports three type of layowits; aircraft ordnance loading, simple

HUD, and threat situation. Examples of these layouts were given. The
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Layout Editor Is capable of supporting other layouts, but It wasn felt that
S these selected layout types were diverse enough to demonstrate the generic

editing capabilities of the Layout Editor without adding additional layout

typos.
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S• A~fU•~ConcRlusionstlos

This thesis has been a preliminary attempt to define (quantify) a

possible ALC representation for the AC/CSRL. It has focused on the rapid

prototyping of pictorial type cockpit displays via the use of existing cockpit

layouts and symbology. This research has resulted In the design and

implementation of a highly interactive, graphics based environment known

as the ALC prototype.

The ALC prototype was designed to support four major AC/CSRL ALC

requirements; namely,

I. user supportiveness,

0 2. Interactive creation and modification of cockpit layouts,

3. Interactive creation and modification of cockpit symbology, and

4. storage and retrieval of cockpit layouts and symbology.
Due to limited time and resources, the current ALC prototype

Implementation only supports the first two requirements; user

supportiveness and cockpit layout generation. However, this
Implementation has shown to be sufficient to demonstrate the central

theme of the AC/CSRL ALC concept; namely, the interactive support of

cockpit display generation. Implementation of the remaining requirements

would greatly enhance the capabilities of the ALC prototype and would
provide a suitable framework for demonstrating a broad range of design and

Implementation Issues associated the AC/CSRL ALC effort.

Conclusions and Recommendations 83



This thesis has demonstrated the concepts proposed by the AC/CSRL

effort are feasible and can be Implemented using todays technology. What

this thesis did not demonstrate, nor did It attempt to, was what the final

ALC representatlon should be. Rather, this thesis proposed a candidate ALC

representation basd on several key ALC requirements.

Aside from demonstrating the ALC concept from the users viewpoint,

this thesis also addressed the use of object-oriented concepts In the design

and Implementation of the ALC prototype software. A consistent

object-oriented metaphor was applied to all levels of the ALC effort. At the

user level, all Interactions were viewed as the manipulation of cockpit

'objects'. The software design was based on an object-oriented design

methodology, and the actual software Itself was Implemented In an

object-oriented fashion. This approach provided a consistent framework

* from the application down to the Implementation; this Is seldom attainable

with more traditional approaches.

In addition to providing a consistent metaphor, an object-oriented

Implementation supporting multiple Inheritance, proved a viable means of

rapidly generating software. Classes, once fully Implemented and tested,

served as the foundation for building other classes. Building new classes

upon the functional capabilities of existing classes reduced the need for

extensive software development and testing.

Although this thesis addressed a srp'clflc application, the rapid

prototyping of pictorial cockpit displays, the graphics environment that

supports the prototype ALC was developed as generic as possible. It should

be possible to extend the ideas and concepts embodied in this environment

to other areas requiring the rapid prototypIng of pictorial displays.
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Recommendations are divided Into two areas; short term and long term.

Short term recommendations suggest ways for Immediately enhancing the

capability of the ALC prototype. Long term recommendations are

enhancements or Issues Identified as part of this thesis effort that could

Impact directly the AC/CSRL development effort

Shor L The most Immediate short term enhancement that could

be applied to the existing ALC prototype Implementation would be the

Implementation and Integration of the Symbol Editor and Librarian with the

Layout Editor. Currently, the Layout Editor must emulate specific

capabilities originally Intended to be supported by the Symbol Editor and

O Librarian (i.e. cockpit symbol construction and layout retrieval). The

emulation Is primitive and detracts from the original Intention of the

Layout Editor, namely; cockpit layout construction. By implementing the

Symbol Editor and Librarian, the ALC prototype would truly be a supportive

environment.

The ALC prototype could also be enhanced by rehosting the software on

a dedicated graphics workstation. Currently, the ALC prototype software Is

hosted on a Raster Technologies Model One/25 graphics processor connected

to a time-shared VAX 11/785. In this configuration, the Model One/25

serves as an intelligent graphics terminal, while the VAX 11/785 performs

the majority of the computational tasks. User Interaction Is often hampered

by this set up. Besides being constrained by a relatively slow (9600 baud)

communication channel, the VAX Is sometimes heavily utilized by other

applications resulting in intermittent bursts of high user response followed
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by no response at all. This hit and miss rosponse mode significantly

letracts from the interactive capabilities of the ALC prototype. A

dedicated graphics workstation should eliminate this problem provd'ing the

,er with a more reponsive system.

Display representations could also be enhanced by providing a thr-.

(Imensional extension Currently only two dimensional design

.epresentations are supported. A three dimensional extension would

broaden the scope of possible design representations that could be

"upported by such an environment.

As more and more military software systems are being Implemento' In

Ada, It might be warranted to translate the current implementation to Ada

to provide a better integration with other software packages. Although Ada

joftware can be designed using an object-oriented approach [Booch,1986],

,& the object-oriented nature of the design is lost in Implementation. Ada

loes not directly support an object-oriented implementation schema such as

Smalltalk, or the environment implemented in this thesis. Recent efforts to

,rovide an object-oriented framework In Ada has met with some degree of

success, yet a complete object-oriented implementation of Ada looks

S)ubtful [Braaten and Hanson,19861. As such, some of the object oriented

nature of the ALC prototype implementations will have to be compromised

fnr an Ada implementation.

LongIer.. The long term recommendations presented here pertain

more to the AC/CSRL project as a whole, rath.ýr tlian indl,'4,l

enhancements to the ALC prototype. The recommen-0,i:ions identified durir,11

t..ls thesis effort should be considered as possible requirements for the

AC/CSRLos ALC.
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When testing the layout capability of the Layout Editor, It was often

_ * noticed that different layouts could be constructed In which the layout

representation could not be matched by Its corresponding Implementation In

the real world. For example, the aircraft ordnance loading layout (Figure 13)
allows aircraft to be configured with different type of missiles. In a real
aircraft cockpit, this display type would actually represent the aircrafts'

current ordnance status. As such, there Is fixed physical limit to the

amount and type of ordnance that a specific aircraft can deploy. The ALC

implemented as part of the AC/CSRL should provide some means of

determining If a cockpit layout Is valid. Design verification could be

achieved by Integrating a knowledge base with the graphics editor used.

Another feature not Implemented as part of the ALC prototype, which

should be Incorporated In the AC/CSRLsB ALC, Is the capability to describe

object behavior. It Is not enough Just to be able to describe an object's

form, the designer should also be able to, from the ALC, describe an object's

behavior. The definition of an objects behavior could include spatial

contraints (i.e. vertical or horizontal movement) and Identification of which

responses from the Intended environment invoke a reply from the object.

From such definitions, It should be possible to generate application

software to dynamically model the layout. Related work In this area is

currently being conducted by [Foley and McMath,19861 and [Hollan et.

al., 19841
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AnnnndiX & DaMOgn Methodoloines

Software design can be viewed as a decomposition process guided by an

abstraction criteria. The decomposition process divides the original problem

space Into a series of smaller, simpler problem spaces while abstraction

guides the process by Imposing restrictions on how the problem space Is

divided. The choice of the abstraction criteria directly impacts the

structure of the final design.

Traditionally two forms of abstraction criteria have been applied to

the decomposition process: functional (process-driven) and data-structure

(data-driven). Functional decomposition techniques have been popularized by

practices known as top-down design, Structured Design [Constantine and

q Yourdon,19791, and step-wise refinement [Wirth,19711. These techniques

approach decomposition based on an algorithmic or functional view of the

problem domain [Booch, 1986:2111. Large, complex problems are divided Into

a series of smaller more managable subproblems. These subproblems are

solved or further decomposed into a series of even smaller subproblems.

Decompositon is repeated until the entire problem is stated in terms of

smaller, solvable subproblems. The subproblems solutions are then combined

to solve the original problem.

The program structure derived from functional decomposition embodies

a hierarchical refinement of functional detail. Each level of the hierarchy

expresses an abstract definition of system functionality. The top most level

defines 'what' the system should do. Succeeding levels refine this definition

until the most fundamental operations are defined. Each fundamental

operation specifies 'how' a particular function In the system performs. By
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combining these operations under a hierarchical nr~work of control flow a

hierarchical progrm structure of functional components Is created.

A second approach to software design decomposes the problem space

based on a data-structure abstraction. Methods developed by Jackson

(Jackson,19831 and Warnler [Warnierg19771 are the most popular. These

methodologies subscribe to the Idea that the "structure of a software

system should reflect the structure of the data processed by that system*

[Sommervllle,1g85:Ggj Instead of decomposing the problem space based on

how the system functions (i.e. functional decomposition), the problem space

Is decmposed based on an analysis of the Input and output of the system

data This decomposition results In a hierarchical definition of the data

structures that reflect the data processed by the system. The program

structure Is formateid by transforming the hierarchy of data structures Into
_ a hierarchy of corresponding program units that process the data.

Traditional software design methodologies provide for the formulation

of problem domain representations (desi ) based on either a functional or

data-structure viewpoint. Functional decomposition techni have

concentrated on defining the operations In the problem domain with little

regard to the data structures needed. On the other hand, data-structure

decomposition techniques have taken just the opposite approach. The

data-structures are defined first; functions are defined as an afterthought

to use the structures. Program structures generated by these techniques

seldom portray a clear and direct representation of the problem domain. The

program structure ends up representing a set of operators (functions) or a

set of operands (data) [Coxl984:581 A synthesis of function and data Is
absent. This causes the program structure to be a transformation of the

Sproblem domain rather than a direct mapping of It. The program structure
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becomes "removed from the problem space [Io 1983:401

An alternative to the more traditional software design methodologies
(i.e. functional and data-structure) is based on an object-oriented approach,

Object-Oriented Design (000) is a software design technique In which

"decomposition Is based upon the concept of an object [Booch, 1986:2111

Objects encapsulate both the state (data-structure) and behavior (function)

of entities In the problem domain [Cox,19857J A synthesis of

data-structure and functionality Is achieved.

The Idea of combining data and function as a single decomposition

criteria is rooted In the principle of 'Information hiding' (Pamas,19721

Information hiding conceals the Internal processing details of Individual

levels of the program structure from each other. Each level has access only

to Information that is pertinent to its processing needs. Access to

information from other levels is prohibited. Each level encapsulates Its own

data structure and operations. Levels communication through well-defined

interfaces. Knowledge about a levels' Internal processing details are hidden

from the calling level, only the interface syntax Is visible.

The value of 000 arises from information hiding. Objects are abstract

entitles containing both state (data) and behavior (operations). Every object

hides its internal details from other objects and communicates via message

passing (well-defined Interfaces). Objects provide an abstraction medium

for consolidating the Ideas of information hldhn~i. Žýogram structures that

were once transformations of the prob '1 domain (U .. lots of operands or

sets of operators) are now composed of Ol ýLttS ,pei'ands and L','tors),

Decomposition is viewed as an identification pr%. ds. Objects are Identified

In the problem domain and mapped directly Into the kl,, (rur.',"-.

Functionality and data-structure are no longer viewed as separate
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attributes ot the problem domain. W a result, the designer Is not forced to
O restate his problem In computer-domain terms, where everything must be

either an operator or an operand [Cox,1984581, but rather defines the

design In terms that exist In the problem domain.

Basically, OO can be generalized in the following four steps

I) Definition, examination of the problem domain,,

2) Identification of the objects In the problem domain,

3) Identification of operations performed on the objects, and

4) Implementation of the objects.

[Booch, 1986:213; Buzzard et. al., 1985:11; Cox, 198 4581

The first step, problem dfinition, Is common to all design

methodologies. Its goal Is to define a complete and understandable

description of the problem domain.

AML The second and third steps In the 000 process Involve the Identification

of objects and associated operations. The procedure for doing this seems

more of an art than a science. Depending on the complexity of the problem

domain, the task of object and operation Identification may be Intuitively

obvious or seemingly Impossible.

Attempts to formalize the Identi fication process have been popularized

by methods proposed by Abbott (Abbott, 19831 and Booch [Booch, 19831 Their

strategy Is based on Identifying objects and associated operations by

extracting noun and verb constructs from a nrtural language description of

the problem. Objects are associated with noun, pronouns, and noun clauses,

"l.Ile operations are associated with verbs, verb phrases, and predicates

[EV6, i 985: 2-6,2-91 Proponents of the strategy claimed to have used this

technique successfuly for small to medium sized (up to 30,000 lines of

•. uvde) progrnavs [EVB,1985:1-21 Yet skepticism remains about the
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applicability of such a method for large complex programs and whether a

natural language description can produce a clear and concise enough

description of the problem domain for this technique to be used

[Sommerville, 1985: 94].

The final step, Implementation, performs the actual mapping of the

design Into software. The degree to which the software retains Its

object-oriented structure depends directly on the language used for

Implementation.
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hApael I; Characteristic, andu minn•Insci. a with
Ob ject-Ortented ytm

This appendix provides an Introduction to the characteristics and

terminology associated with object-oriented systems. This appendix Is not

Intended to be a tutorial on the subject, but rather a consolidation of terms

and characteristics found throughout this thesis. Specifically, this

appendix addresses three main concepts associated with object-oriented

systems; namely, class, message passing, and Inheritance.

Objects are the sole Inhabitants of an object-oriented environment.

They encapsulate the properties of data (operands) and procedures

(operators) into a cohesive whole. The data, or Instance var/abes define

the Instrinsic properties of the object. For example, a line object may

contain Instance variables that describe Its form as two end points,

start ing.end-point and term inating-end.point. The Instance variables

defined for an object are only known to that object.

Objects also contain procedures or methods. They are the sole means

of manipulating an objects instance variables. Only those methods defined
for an object can manipulate that obJects Instance variables. Methods

defined in other objects are forbidden from directly modifying Instance

variables of different objects.

Objects are Implemented as Instances of classes. Classes serve as a

blueprint' for constructing all objects in the system. All objects are an
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Instance of a single class; however, classes can have multiple Instances (i.e.

mobjects) For exampl@, the class Rectangle defInes all the Information
necessary for creating a rectangle. Instances of the class Rectangle would

define a set of different size rectangles. Each rectangle has in common the

property of 'rectangleness', yet they differ In their presentation (i.e. size).

Classes capture the 'gestalt-nesas of the Instances

Classes consist of class variables and storage for the Instance

methods. Class variables differ from Instance variables, In that, class

variables are shared by all the Instances of the class. In contrast, each

Instance maintains Its own Instance variables and has exclusive access to
them•

Besides class variables, each class maintains the actual

Implementation of the Instance methods In principle, every Instance of a

& class could maintain a personal copy of the methods; however, this strategy

Is wasteful (memory) and serves no useful purpose. By confining the actual

Implementation of the methods to the class definition, memory

requirements are minimized since all Instances share the same methods.

Viewed In this way, a class can be thought of as collections of objects that

have the same operations in common [Curry and Ayers, 19845201

Message PassiN

Objects communicate via a message passing paradigm. Instead of

directly Invoking a procedure (operator) to perform an operation on an

object, one sends a message to that object. The receiving object determines

how to handle the message. The receiver has three options available to It;
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I) it can Invoke one olý its methods to implement the message,

2) It can Ignore the message, or

3) It can pass the message on to another object.

In either case, the sender has no control over 'how' or 'who' finally

processes the message. The sender blindly trusts that the receiver will do

'the right thing' [Rentsch, I 982:54]. The messages that an object responds to

defines the object's interface to the rest of the system.

The principle that makes message passing possible Is binding. Binding

Is the act of translating the application software into actual machine

addresses for execution. There are two basic forms of binding, static and

dynamic [Aho and Ullman, 1979:371 Static binding Is usually performed at

compile time. The software Is bound to actual machine address prior to

execution. This method Is very efficient, binding all functions/procedures to

Sa specific data type. It becomes Impossible to use a procedure to

manipulate Integers on one line then use that same procedure to manipulate

strings on the next line. The procedure must be explicitly defined with an

appropriate data type and used with that data type consistently throughout

the software. On the other hand, dynamic binding delays the type checking

until run time. It becomes the responsibility of the software environment

to determine how to handle multiple data types, making it possible for a

procedure to manipulate different data types.

Object-oriented systems use some form of dynamic binding to support

message passing. Messages are sent to objects to elicit a desired action.

Since the message content is not checked jntil run-time, multiple objects

can be sent the same message. It then becomes the responsibility of the

receiving object to determine how to interpret the message. For example,

the message 'draw' would elicit a different response from a Line object than
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*m It would from a Circle object. Both objects would Interpret the message

1W and perform the appropriate draw response. The meaning and syntax of the

message Is the same for both, but the means In which the message Is

Implemented Is dependent upon the object that receives It. The

reponsibilIty of Implementing the message rests squarely with the

receiving object.

Object-oriented systems also support a concept known as Inheritance.

Inheritance Is a means of creating specializations of existing classes. The

new class, known as the sttc/ass, inherits all the class variables, Instance

variables, and methods of the existing class, or stporc/l#. The subclass Is

~ distinguished from Its superclasss by unique class variables, Instance

variables, and methods. Methods defined In the subclass may override the

methods Inherited by the superclass or can be used to enhance the

superclass methods. (Pascoe, 1986: 1421

There are two basic forms of inheritance, hierarchical and multiple

[Stefik and Bobrow, 1986:46-491. Hierarchical Inheritance is the simplest of

the twa. It restricts the number of classes that a subclass may inherit to

one. Each subclass in the hierarchical scheme has only one superclass. This

results In an Inheritence structure similar to a tree In which each node Is

the decendent of only one previous node. Multiple inheritance, one the other

hand, alloy.,s multiple classes to be Inherited by a single subclass. This

results ,n a trý.,i structure In which a node can be descendant from one or

more other nudes. Figure 16 Illustrates this difference.
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Hierarchical Multiple
Inheritance Inheritance

Figure 16. Example of Hierarchical and Multiple Inheritance,

When viewing Inheritance diagrams, It Is Important to understand

which direction the Inheritance follows. Upon Initial Inspection, one would

assume that class A, would Inherit characteristics from both B and C. In

inheritance diagrams, such as Figure 16, this Is just the opposite. It Is

classes B and C that Inherit characteristics from A. In the hierarchical

example, each class Inherits characteristics from only one other class. In

the multiple Inheritance example, class F Inherits characteristics from

both B and C.

The choice of which Inheritance mechanism Is used will often depend

on the class structure of the application. For applications where classes

are mostly Independent of each other, a hierarchical Inheritance structure

could suffice. However, In applications, where classes are highly

Interrelated, the use of a multiple Inheritance structure Is warranted.

Multiple Inheritance structures provide an extra level of flexibility not

usually associated with strict'y hierarchical structures. Since classes In a
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* multiple Inheritance structure can Inherit multiple classes, adding new

classes is simply a m&tter of establishing new Inheritance links to the

existing structure. Adding new classes to a hierarc.,cal stucture could

entail a readjustment of 4e entire structure.
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-- naumendalx Q An h c it-OraLnteExtenshin Mfth M L'CMJ

This appendix describes an object-oriented extension of the 'C'

language that was Implemented as part of this thesis. It differs from

previous object-oriented extensions of 'C', [Stroustrup, 19831 and [Cax, 1983],

in that It does not require the code to be pre-compiled. All extensions are

Implemented in standard 'C. This should make this implementation

transportable to other C systems.

Three primary extensions were added, namely; class type, message

passing, and multiple Inheritance. The models for these extensions were the

5malltalk language [Goldberg and Robson, 1983] and Traits [Curry and

Ayers,19841 A description of these extensions Is provided in the following

sections.

The class concept Is im' lemented as a data structure consisting of

three Interrelated components; object, class, and method table. Each

component Is Implemented with an identical 'C structure (Figure 17). Each

node In the structure consists of six fields. The first field, type, Identifies

the component for which the node Is being used. The second field, ptr.type,

provides a generic means of assigning the different components to the node.

Field three, super, supports the concept of inherltence by serving as a link

to other class nodes. The fourth field, path, is used to link the different

components together. The fifth and sixth fields, next and back, are used by

the system to construct component lists of object and class types.
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_ _struct node

type {

ptrtpe oInt type;
node..ptr.type *ptr.type;

super super-link-tgpe *super,

path node.tUpe *path;

next node-type *next;

back node-type *back;

tgpedef strcut node node.tgpe;

Figure 17. Generic Node Structure.

9bact Oft An object node represents an actual Instance of a class.

Mul•tpe object nodes can be Instantiated for a single class. Each object

node Instantiated shares all the class variables and methods defined for the

class. However, the Instance variables associated with an object node are

private to that node.

Objects are Instantiated dynamically at run-time. The application

program will typically send a message to b, class requesting the creation of

an object. The class, in turn, will Invoke the appropriate class method to

allocate storage from the memory heap for the object. The new object Is

then linked to the class node. A handle, or pointer, Is returned to the

application identifying the new object. Objects can also be deleted from the

system in opposite manner by nulling Its pointers and deallocating its

storage from memory.
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Class Class nodes are the foundation of the data structure. All

object nodes are linked to class nodes. There exists a many to one mapping

between object nodes and class node. Only one class node is associated

with an object nodes. Class nodes provide the common channel for all

method Invocation.

All classes are instantiated are run-time by the function setupO.

Setup() allocates storage for each class node and assigns global pointers for

each class. These pointers are used by applications to Identify the class in

which they want an Instance. Setup() should be the first function called by

the application and It should be called only once.

Hethod Table Node The method table node provides access to the

methods associated with a class. Methods are maintained In a linked list

. structure. Each node in the list contains a selector; to identify the method, a

parameter count, and the actual machine address of the 'C' function that

implements the method. Figure 18 illustrates the linked list structure of

the method table. The method table node and list structure Is Instantiated

automatically when the class node is Instantiated.

"The Inter-relationship of object, class, and method table nodes

illustrated in Figure 19 represents the system structure containing a single

class. As more classes are added, the system structure takes on the form of

a tree (Figure 20) where each node in the tree represents the structure as

presented In Figure 19. The branches In the tree form the Inheritance chain

between classes. All Inheritance In the tree terminates In a single node or

class. This class Is commonly refered to as Object. The class Object Is the

* only class In the system that does not have a superclass.

Appendix C 101
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super
pa~thtl
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back m4 function

Figure 18. Method Table Structure.

ob ject meth9d taft

type - tupe tup.
ptr..type ptr-type ptr-type

super super super

path path miipath

neNt neNt fle~t
bac ba=ck back

Figure 19. Interrelationship Between Nodes.
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Fu 20. Structure of Multiple Classes.

All objects Interact via message passing. Essentially, message passing
Is a form of Indirect function Invocation. Instead of directly Invoking a

function, as Is done in Ada or Pascal. a message is sent to an object for

processing. The receiving object then determines how the message Is

handled, not the sender.

Message passing Is performed via two 'C' functions, msg() and

broadcast-to.superO. Msg() is the primary way of sending messages to an

object. Msg() supports message passing directly to a different object or

allows a message to be sent to Itself. Broadcast..to-super() allows a

message to be sent Immediately to the objects superclass by bypassing the

S object's methods.
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Both procedures employ the same parameter passing order or protocol.

The protocol of each function consists of a receiver, the message (or

selector), and any parameters associated with the message. The receiver Is

the object In which the message Is Intended for. The receiver may be a

different object than the sender or the sender may send Itself a message. In

either case, the message must always be addressed to an object. The

system currently performs little errror checking. Any attempt to send a

message to a non-existent object will most likely cause the application to

crash.

The selector Is the actual message text, character string, that

Indicates which method should be Invoked by the receiving object. Each

message can have up to five associated parameters. These parameters can

be any of the following data types: char, Int, float, and node-type.

Examples of message passihg follows:

msg( clrcle,'setRadlus',20);

This example Illustrates a message being sent to the object 'circle'.

The sending object has requested that 'circle' change Its radius to 20. If the

message had been:

msg( circleRadlus'.20);

Circle woula have Ignored It and retained it original radius va•iie since
'circle' does not understand what "Radius" means. It thus becomes very

' Important to send the correct format of the message to the object to ensure

that the desired action Is performed.
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MsgO also has the capability of returning a response from an object. In

such cases, the sender must know beforehand the format of the reply, for

example, If sender requests the circle radius:

radius a (int) msg( clrcle,'getRadfus');

The sender must know in advance that the result will be of '/nt' type. The

sender should not expect something different. More complex formats can

also be returned from msg), for example:

new-circle - (node-type *) msg(clrcle,'clone,);

returns a pointer to a copy of the orIginil 'circle' object.
SBroadcasLtto.super() does not provide a reply capability. Thus It should

only be used for messages that generate no response.

Multiale Inheritance

Having described how message passing is performed on the conceptual

level, It Is now worthwhile to Investigate how message passing Is handled

by the system Whei, an object. eceives a message, It scans Its method

table comparing the selector passed to it against selectors stored In the

method table. If a match Is made, the 'C' function associated with that entry

Is Invoked. If no match Is found, the object has one of two options. It can

simply ignore the message and return control back to the sender, or It can

O pass the message on to its superclass.
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An object can Ignore a message only If It has no superclass to pasa the

message on to. Since the class Object Is the only class with no superclass,

It Is the only class the Is allowed to Ignore a message.

Passing the message on to an objects superclass, cause the superclass

to search Its method table. If no match Is found, the message Is passed on to

the superclasses' superclass, or the original receiving objects

super-superclass. This recursive procedure continues until a match is found

or until Object receives the message. If Object can match the message In Its

method table, the function Is Invoked, otherwise the message Is Ignored and

control Is return to the sending object.

The ability of an object to pass on a message to a superclass Is the

basis for Inheritance. When a message Is processed by the superclass, the

original Instance Is said to Inherit that supperclass's method. Even though

S the method that Implemented the message Is not defined In the objects

method table, It can be used as If it were. When an object only inherits

methods from a single superclass, Inheritance Is viewed as hierarchical. All

classes In the Inheritance chain, Inherit the methods of only one superclass,

and that superclass Inherit methods from only one super-superclass, so on

and so on until the Object class Is reached.

Multiple Inheri'ance allows a ý.ar,; to Inherit methods from multiple

superclasses. The supccla.es• can then Inherit methnOR from multiple

superclasses, so on and so on, Wl.1 all Inheritance terminates with the

Object class.

A multiple Inheritance schema was chosen for this imý.!Pfen.taLon. To

support multiple Inheritance a precedence list was established for each

eobject (the field 'super' In the object node points to this list). This list
keeps track of all the superclasses associated with an object. When a :
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message is sent to an object, the object's method table is searched. If does

not contain the method, the method table of the first superclass In the

precedence list Is searched. If the search falls, the method table of the first

superclass In the current superclass precedence list Is searched. This

continues until the Object class is reached. The class Object Is represented

by a precendence list that points to NULL When a NULL is encountered,

control Is return to the previous superclass and the next class In the

precedence list Is searched. This continues until a match Is found in one of

the superclass's method table or until the calling object Is returned control.

This may seem a bit complicated at first, but as more and more classes

are added to the system, the power and elegance of this schema to absorb

them without modifications to the software structure becomes evident.

New classes are simply assigned pointers to the superclasses in which they

* wish to establish an Inheritance with. All methods associated with the

superclass are made accessible to the new class. This provides a high

degree of software reusability among the classes.
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Amindix a; Cl Dhnsriptions

This appendix describes the interface for all currently implemented

classes. Figure 21 Illustrates the inheritance relationship among these

classes. These classes are divided into three categories; 1) graphic

primitives, 2) user Interface, and 3) miscellaneous The graphic primitives

are classes that describe basic graphic entities such as rectangle, circle,

and polygon. The user interface consists of classes that support the ALC

prototype user interface. The miscellaneous classes provide support for the

other two class categories.

Classes are described in terms of variables and methods. Specifically,

, each class provides the following Information

1. Class Name

2. Superclass: The superclass(s) identify those classes that are
Inherited by the current class. All class variable, instance
variables, class methods, and instance methods defined for a
superclass are inherited by the current class.

3. Class Variables: Defines those variables that are unique to the
class and shared by all Instances of that class.

4 Class Methods: The methods (operations) that are uniquely defined
for the class. The 'C' Interface for each method Is provide.

5. Instance Variables: Defines those variables that are private to
each Instance.

6. Instance Methods: The methods that are available to an Instance.
The 'C' Interface of each method Is provided.
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Graphic Primitives

eI
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-"Cls circle

Su•. C.•ass graphic primitive

Class Variables: none

Class MlethJods:

new
function: Instantlates a circle object.
circle a (node-type *) msg( circle.class,"new")

Instance Variables:

radius : defines the radius of the circle.

Instance Methods

clone
function: Answers with a clone of an existlng object.
object-clone a (node-type *) msg( circle,"clone)

setCIrcle
function: Defines where the circle Is, and Its' size.
m4g( circle,*setCircle',[x1,[y][radius])

setRadlus
function: Defines the size of the circle.
msg( cIrcleOsetRadIus,[radIusJ)

scaloey
function: Scales the circle In both the x and y directions.
msg( circle,*scaleBy,[factorj)

draw
function: Draws the circle.
msg( circle,"draw)
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twuctdaf Prints the circles Instance variabes.
msg( clrcl@'internals)
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-CIA graphlc-primitive

ubw.. iA= object

Clas Variables: none

now
functlor. Instantlates a graphic primitive objecL
primitive a (nodLtype *) msg( gruphic-primitIve-clnas,snew")

Instance Varlables.

cxcy : center point of graphics primitive
color : color of graphic primitive
soliFill : flag Indication whether primitive should be solid filled
drawMode: determise how the Image is drawn on the screen

(i.e. normal or XOR)
area : area of graphic primitive In pixels
extent : the graphic primitives extent on the screen. The extent

is defined as a rectangluar region.

Instmce Methods:m

clone
function: creates a clone of an existing object. Caller Is returned

a handle to a new object.
clona.object - (node-type *) msg( primitive,*clone")

setColor
function: sets the color of the graphic primitive.
msg( primItiveasetColor", [COLOR])

setSolidFill
function: sets whether a graphic object is displayed solid filled.
msg( primItive,"setSolidFI1r, [TRUE or FALSE])
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setExtent
function: sets the rectangular extent of the graphic primitive. The

area of the graphic primitive Is automatically updated.
msg( prim Itive,osetExtento( left], [bottom), [right], [top])

setDrawllode
function: Sets the drawing mode- for the object.
msg( prim Itive~msetDrawI~ode" JmodeJ)

getColor
function: Answers with the primitives color.
color a (int) msg( PrImItive.ogetColor')

getssidffili
funcitort Answers with the primitives solid fill status.
f IlI (tOnt) msg( prim ItivegetSollIdFIlIrI)

getExtont
funciton: Answers with the primitives extent.
extent a (extenL-type *) msg( prim I tivegetExtent"

getDrawflode
function: Answers wih the primitives drawing mode.
mode a (int) msg( prim Itive.'0gotDrawf~odef)

getArea
function: Answers with the primitives' area.
area = (nt) msg( prim I tiveogetAreaM )

getCenterPoInt
function: Answers with the primitives center point.
point a (point-type *) msg( primItIveogetCenterPontrat

containsPoInt
function: Answers whether the primitive contains a specific

point ( TRUE or FALSE ).
reply * (nt) msg( primI tive~fcontainsPoInt",(xj, (yJ)
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moveTo
function: Moves (centers) the primitive over a specific point.
msg( prim Itive,'moveTo"',x],y])

showExtmnt
function: Displays the primitives' extent.
msg( primitivei-showExtent")

hideExtent
function: Erases the primitives extent
msg( primitive,'hldeExtent")

Internals
functlon: prints the Instance variables of the primitive.
msg( primItive,'internals)
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, £113QM: line

,SUD£.tC1W: graphic primitive

O glam Vilabl none

new
function: Instantlates a line object
line a (nodetype *) msg( IIne..class,'new)

Instance Vriables

starLx,start~y : the starting end point of the line.
end.x, end.y : the end point on the line.

Inatance MOthMa

clone
function: Answers with a clone of an existing object.
object-clone a (nodLetype *) ms( IlIne,"clone")

setLIne
function: Defines the end points of the line.
msg( I lnesetl ine3[star'txlIstarLy],[end.x],[end.y])

scalefy
function: Scales the line In both the x and y directions.
msg( I lne'scalesymAfactor])

draw
function: Oraws the line.
msg( lIneodraw")

Internals
function: Prints the lines' Instance variables.
msg( line,'intemals" )
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. gaaOM polygon

_u L Class: graphic primitive

Clus Vriables: none

new
function: Instantlates a polygon object
poly w (nodL.type *) msg( poly..class,*new")

Instoce Vwnabley.

numrof.points : Number of points that define the polygon.

-- ~ Instanc Ith~ok~t

clone
function: Answers with a clone of an existing object
object-clone a (nodeitype *) msg( poly,'clone")

addToPoly
functiorn Adds a point to the polygon
msg( poly,'addToPoly",xl,[y)

-•- scaleny

functiorn Scales the polygon In both the x and y directions.
msg( poly,'scaleBy',xJ,[y)

draw
functiorn Draws the polygon.
msg( poly,'draw)

Internals
function: Prints the polygons' Instance variables.
msg( poly, internals)
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* £ilua rectangle

SuII Clam graphic primitive

Class Varlablas: none

now
function: Instantiates a rectangle object
rect a (nodeatype *) ms(recLcluss,6new")

Instance Varlables:

left,,bottom : lower left hand corner of the rectangle.
right, top : upper right hand corner of the rectagle.

clone
function: Answers with a clone o, iAlsting object.
object.clone - (node..type *) msg( rect,'clone)

setRect
function: Set the dimensions of the rectangle.
msg( rect,'setRect',IleftJ,[bottom],[rtghtL~top)

scaleny
function: Scales the rectangle In both the x and y directions.
msg( rect,'scaleay',factorj)

draw
function: Draws the rectangle.
msg( rect,'draw")

Internals
function: Prints the rectangle's Instance variables.
msg( rect,'Internals)
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rim text

SuI Class: graphc-Vprimitive

Class Varlabl noe

Cl-Ma thpds:

new
function: Instantiates a text object
text a (nodetype *) msg texLclass,'new')

InstaMce Vwalbler.

length : Text length In pixels.
height : Text height In pixels.
size : Font size.
font : Style of font.
texLstrlng : Actual character string.

, • Instance olethoda

clone
function. Creates a clone of an existing object. Answers with a

handle of the new object
clone.object a (node-type *) msg( text,*clone")

setText
functlon: Defines text as a string of characters.
msg( text,"setTexto, [ string I

getTextSIze
function: Answers with the current size of text.
size a (Ont) msg( text,'getTextSize") Li

s~cmle~y

function: Scales the text object In both the x and y directions.
msg( text,'scaleBy0, [factor) )
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startWriteAt
function: Defines the location where the lower left hand comer

of the text should begin.
msg( textOstartWriteAt.,[x], Cy])

draw
function: Draws the text string.
msg( textoudraw)

Internals
function: Prints the Instance variables of, thestext object.
msg( text,'Internals)

II
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User Interface
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I

S aaw commands

Supe a ss; window
text

C~lS,,~irab~•:none
glas lyjtl~ls:N

new
function: Instantlates a command object.
command - (node.-type *) msg( command.-class,"new)

Instance Vmrllables.

command..num : command Id.

Instance Methaft'

setCommand
funciton: Defines the command box.
msg( command,'setCommandm,[command text stringj,[command Id])

getCommand
function. Answers with the command Id.
Id a (Int) msg( command,"getCommancr)

moveTo
function: Moves (centers) a command over a specific point.
msg( command,*moveTo',IxJ, [yJ)

draw
function: Draws a command box.
msq( command,'draw"

InLernals
function: Prints the command objects' Instance variables.
msg( command,'internals )
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O s cursor

SmuprCLaA object

Class Variables: none

"MW
function: Instantlates a cursor object.
cursor s (nodetype *) msg( cursor..class,'new')

Instance Variable Names

xy : location of cursor
color : color of cursor bounding box
status status of cursor ON or OFF
leftbottom lower left hand corner of cursor bounding box
righttop : upper right hand comer of cursor bounding box

O Instance 14e thods:

setColor
function: sets the color of the cursor's bounding box.
msg( cursorsetColor, [ COLOR I)

setCursor
functiorn define the cursors' bounding box.
msg( cursor,'setCursor', (anrobject])

updateCursor
function: updates the cursors' position and apperance.
msg( cursoro'updateCursor)

turinOn
function: turns the cursor on. Display the bounding box.
msg( cursortumOn)
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twiwflf
function: turns the cursor off. No bounding box Is displayed.
msg( cursorturnOtf u

tntenalls
function: prints the Instance variables of the cursor object.
msg( cursorwinternals)
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,) CJ~aL dialogue

S ilDRL..1l window
text list
graphic list

Clua VY'rjaJlW none

Class MatmWIL,

IMW

function: Instantlates a dialogue object.
dialogue • (node.type *) meg(dlalogue..class,'new')

Jnatuncoe VuahlabH none
Instance elsthodsU !

appendText
function: Adds textual Information to the dialogue.
msg( dialogue,"appendText', (text string), (font size])

appendCommand
function: Adds command boxes to the dialogue.
msg( dialogueappendCommendr.[command textllcommand Idl,(x],[yJ)

moveTo
function: Moves (centers) the dialogue object over a specific point.
msg( dialogue,"moveTo',(x], Cyl)

draw
function: Draws the dialogue box.
msg( dialogue.,draw")

engagelnolalogue
function: Activates a dialogue box.
msg( dialogue,mengageinDialogue")
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Internals
function Prtnts the dialogues' Instance variables.
msg( dlalogue,'lnternalsr)
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, Class: display window

SM Cla window
graphic list

DCI= V.)twablo& none

elmss I'etlmdw-

DOW
function: Instantiates a dIspl/y window object.
dis.window a (node-type *) msg( display-window.£1ilssnew")

bItance Varlablea none

* le Ite
function Draws all the objects contained In the window.
msg( dis-window,'uxdt,")

Intemals
function: Prints the display window's Instance variables.
msg( dils-windowinternals)
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Sggm mouse

SMc Onamg object

Class Variables:

XOY : location of mouse.
button : active buttonon mouse.

track
function: Answers with the mouses' current location.
reply - (mousa.event-type *) msg( moue...class,"track")

wiltForEvent
function: Wafts until a button Is pushed. Answers with the mouses'

location and button number.
reply w (mouse..evenLtype *) msg( mouseaclass,"waitForEventw)

*getlouse
function: Answers with the mouse's current location and button

number if a button has been pushed, else button number Is
returned as zero.

reply s (mouse.evenLtype *) msg(mousLclass,getMouse")

clearttouse
function: Resets the mouse and clears any queued events.
msg( mousLeclass,*clea" ouse)

Instac VrIlem none

1nstas inc l fth none
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Q=s option

m lam window

CIS mcl o-, none
g~~'idn-

new
function: Instantiates an option object
option a (nodetype *) msg( optlortnclass,"new)

Instmice Vi, laleg none

Insmtene Nethedr.

hiLite
function. Changes the appearance of an option.
msg( option,'hIL ite", (ON or OFF])

Sfuncton: Associates an object with the optlon

msg( option,'setOptlonr,[objectJ

getOption
function: Answers with a handle to the associated object.
objectmndle a (nodeatype *) msg( option,'getOption')

draw
function: Draws the option.
msg( option,'draw")

Internals
function: Prints the options Instance variables.
msg( option,'Internals" I
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Q=m option window

SO iLW window
graphic list

now
function: lnstritiates; a option window object
opt-window m (node-.type *) msg( option.~wIndow-class,"new)

lnsance Variables.

let t,bottom :bottom lef t hand corner of option window.
right,, top :top right hand corner of option window.
duita..x : displacement or the window along the x-axis.
deltL-y - displacement of the window along the y-axis.

. Initmnes Mthodsft

def Ine~ptionWindow
function: Def Ines the size of each Individual window.
msg( opLwindowdefilneOtionWindow.[Ileftl~lbottomjj[righti1(topI)

addTo
function: Adds an option to the option window.
msg( opLwindow,"addToO,[optionJ)

moveTo
f unction; Moves (centers) the f irst option over a specif ic point

All other options In the window are relative to this point.
msg( opLwindow,'moveTo*,JxJ,IyJ)

clear
function: Resets the option window.
msg( opLwindow ,clewr
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pdate
function: Answers with the selected option. The appearence of the

opt window Is modified to reflect the selection.
selection -(rode-type *) msg( opt-window,"update,[x][y])

draw
function: Draws the option window.
msg( opt,.wlndowdraw") I

Internals
function: Prints the option window's Instance variables.
msg( opLwIndow,'Internas")

Apei I
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, laM-. pull down menu

UML .wM- window
graphic list

C1las. arJIa*: nlone

new
function. Instantlates a pull doen menu object.
menu s (node.type *) msg(pulldown..menu-class,*new")

Instanem Variables. none

appo8mdlenultm
function: Adds a menu Item to the meno
msg( menumppentlenultem',[item text], [Item Id])

moveTo
function: Defines (centers) where first menu Item Is drawn.
meg( monumoveTo,IxJ][y)

draw
function: Draws the pull down menu.
mg( menujdrawo)

engagpInDialogu
function: Maintains the cursor within the menu.
msg( menu,'engagelnDialogue")

InternlsI

function: Prints the menus' instance variables.
msg( menu,lntemals)
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CIA= window

Sunm Lmss-i rectangle

r-12.2 Variables. none

now
function: Instantiates a window object.
window a (nodL-type *) msg( window-.class,,new")

backgroundcolor : color of the wIndows background

uet~ackgroundCo br
function: Sets the windows' background color.

W msg( wlndow,,setaacigroundColor,,jcolorj)

getflackgroundalo r
function: MAnwers with the windows' backg~round color.
color = (int) msg(wIndow,"getBackgroundColor)

set Window
function: Def Ines the window size.
msg( w indow,,usetWindowo, (IefttL[bottomJ,(rtghtlf(top])

function: Clears the window with the windows' background color.
msg( window~mclear)

funciton: Clears the windows contents and frame with background
color.

msg( w indowuerase")

Appendix D 133



clip
tunctlorr. Bounds all drawings Inside the window.
msg( windowT"cl10p)

Internals;
function: Prints the windows' Instance variables.
msg(w wndow, Interns Is"
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Miscellaneous
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O MIWO graphics

mIw CiM3 object

Cla, Vrmbli- nore

startUp
function: Initializes the graphics environment.
msg( graphics.clahsstartp)"

shutDown
function: Exits from the graphics environment.
msg( graphics-class,oshutlown)

setScreenlode
function: Sets the way Images we drawn on the screen

(I.e. Normal, XOR, AND).
msg( graphicL.class'setScreeftlodei.tmode])

setOutputlode
funciton: Sets the mode In which output Is sent to the display

processeor (i.e. graphics or alphanumeric).
msg( graphlcsaclaas,ssetOutputModeeImode])

drawPoInt
function: Draws a point In the graphics environment.
msg( graphIcs.class,'drawPoint',[x,[yJ,[color])

drawRect
function: Draws a rectangle In the graphics environment.
msg( graphics-class,*drawRectr,[leftt,[bottom],[right],[top],[color]

drawCircle
function: Draws a circle In the graphics environment.
msg( graph lcs-classdrawCIrc le,[x],[y],[co lor)
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drawfo lygon
function: Draws a polygon in the graphics environment.
msg( graphics-.class,"drawPoiygonm,,poly-objecti)

drawT~xt
function: Write a text string In the graphics environment.
msg( graphIecl.cass,*drawText",CxI,[yljsizei,Icotori)

soliffiII
function: Enables or disables sol Id riIIng of shapes.
msg( phlcLsclausjsoIidFit11811'lagi)

flush~vents
function: Removes all events from the event queue.
msg( grahics..classsatflushEvent")

showCrossHeirs
function: Display the cursor crosshuirs.
msg( graphlcs-claus,ushowCrossHairsV)

hldeCrossHairs
function: Hides the cursor croashalrs
msg( graph ics..c tass"hideCross~ars")

111stsnce Vfhiab la none

Instance Methodst none
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£ia raphic list

Sme Cl~ass: link list

lass Vyabaw= none

now
function: I nstantiates a grahic lI st object.
g..IIstm*(no~dv..type*) msg( graphic-11Ist-class,"new")

Instance MKu'Iabes: none

whoOwnsPoint
function: Answers with the object that contains the point.
owner a (node..type.*) msg( g...list~mwhoOwnsPointm,(xL[yI)

Insert~yArea
function:. Adds an object to the lI st according to the object's area

(acsending order).
msg( g- ist"Insertl~yArea'[objectI)

Internmls
function: Prints the Instance variables of allI the objects In the I Ist.
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ga~~ link list

Smr lass.- object

C1hLY!dhfki*S none

noew
function: instantiates a 1ir0k list object.
list w (nodetype *) msg( Ilst-class,,"new)

inhtafisValb e

member..count : number of elements In the Ilist.
head : f irst element In the list.
tallI : last element In the Ilist.

funct Ans Mwer whether the list contains any elements.
reply w (BOOLEAN) msg( IlstimsEmpty)

getcount
function: Answers with the number of elements In the list.
count a (int) msg( list,"getCount")

uddTo
function: Appends an object to the list.
msg( list,"addlTo, [an-object])

AddToFront
function: Adds an object to the front of the Ilist.
msg( list,MaddroFronto[an..objectl'

Insert~ef ore
f unction: Inserts an object Into the lI st before a specifilc location.
msg( IistInsertBef ore", [location], [an-ol.JectI)
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getobject.
function: Answers with the nP abject from the lI st.
Object a (odxL~type *) m*g lI st,geqtObjectO, ['n)

dielote~bject
runction: Removes an object from the list.
msg( list*deleto~bjoct. [WLmmfbjctj)

freedbjects
funcItort Deletes all objects from theIlist.
mg( Iist,,fr"eObjectir

AppendIx D 140



-i•i text list

•SmL.. aa] link list

Clams VrlIblm none

raw,
function: Instantiate$s text list object
LUIst a (nodLtype *) m'[s textlssLclassnew)

iutiM MS VYaXIilM none

strt WriteAt
function: DefInes the starting location to begin writing the first

text Object in the list. The remaining text object will
begin at the same x cordInate but will be offset In the
y direction.

msg( LliststartWriteAt',xJ,[yJ)

internals
function: Prints the Instance variables of all the text objects In the

list.
msg( Lllst,'Internals)
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* M ndi L- HIk m nl tallzotion

The Raster Technologies Model One/25 graphic processor can be

configured to communicate with a number of differenthost computers. It is

essential that a proper configuration be establ ished with the host computer

to ensure meaningful communication.

The VAX 11/785 requires that all data sent between It and the Model

One/25 be tormated as 7 bits, even parity. It Is critical that the Model
One/25 be configured for 7 bits, even parity communication before any

attempt Is made to run the ALC protoype software. If not configured

properly, all data sent to the Model One/25 will be Ignored. The following

steps outline a procedure for configuring the Model One/25 to handle 7 bit.

even parity data.

Smep 'Cold Boot the Model One/25.

This Is performed by pressing the 'cold boot! button located on the

right-l-•-! rear corner of the Model One/25 processor. This action will

cause the Model One/25 to boot with Its current configuration.

Stan 2 Enter 'graphics mode.

From the alphanumeric terminal connected to the Model One/25 enter a

<CTRL D> or <CTRL E. The system should respond with a exclamation point
(I). The exclamation point Indicates that the Model One/25 Is In 'graphics

mode'.
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TABLE VIII
Communication Configuration for the Model One/25 and the VAX 11/785

PORT RTS CTS STOP BITS HIN HOUT CTRL PRRITY BAUD

RLPHRSIO OFF OFF 2 8 ON OFF ON NONE 9600
MODEMSIO OFF OFF 1 8 ON OFF OFF NONE 1200
GRINSIO OFF OFF 2 7 OFF OFF OFF NONE 1200
TRBLETSIO OFF OFF 2 8 OFF OFF OFF NONE 1200
KEYBSIO OFF OFF 1 8 ON OFF ON NONE 300
HOSTSIO OFF OFF 2 7 OFF ON ON EVEN 9600

IEEE port : modes off address = 0000

Host mode Is HEHRSCII

ROM sequence number Is 001

Special Characters :
Ent~r Break Warm Kill BS RCK Abort Debug HON HOFF
0005 0010 OtB 0040 0009 0007 0015 0018 00110015

Sten 3 Display the current configuration.

Type discfg at the prompt.

I dlscfg 'CR

The current Model One/25 configuration should be disnlayed. Check this

configuration against the configuration shown In Table VIII. If the HOSTSIO,

Host Mode, and Special characters are the same, then the Model One/25 is

correctly configured. Skip the remaining steps In this procedure by typing:

I quit (CR)

otherwise, proceed with the following steps.
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stLm Set Special Characters.

If the special characters are correct proceed to step 5, otherwise enter

the following at the prompt-

I spchar 0, 185 4CR)

I spchar 5.1.7 (CR)

This will set the 'enter graphics' character to a <CTRL E) and the

'acknowledge' character to a <CTRL G6.

StnS: Set HOSTSIO Line.

If the HOSTSIO line is correct proceed to step 6, otherwise enter the

following at the prompt:

I syucfg serial hostile rts off cts off stop 2 bits 7

parity o baud 9600 xin off xout on ctrl on (CR)

The system should respond with:

are you sure?

An~swer.
yes (CR)

The Model One/25 will perform a 'warm boot', exiting you from the

'graphics mode'. Reenter 'graphics mode' by typing <CTRL E>. At the prompt

type disctg and verify that the HOSTSIO line that was entered Is correct. If

it is Incorrect, repeat this step, otherwise continue.

Stgo Set Host Mode.

If the host mode Is correct (i.e. HEXASCII), proceed to step 7, otherwise

set the host mode by typing:

I syscfg host hostslo ascii (CR)
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* The system should respond with:
ae you Mrs?

Aniswer.
yes (CR)

Again the-Model One/25 will Perform a 'warm boot'. Reenter 'graphics
mode' with a <CTRL D. Type discig, verify the results, and repeat this step
If necessary.

Stan 7 Saving the Conf iguration.
To save this configuration to the Model One/25s' non-volatileW memory,,

type:
I savcfg <CR)

The system should respond with:
amyou sur?

Answer.

yes (CR)
At this point the correct conf iguration has beon saved. Communication

between the VAX 11/785 and the Model One/25 graphic processor Is now
possible.

Since all configuration data Is stored In non-volatile memory, this
configuration should remain until the configuration Is physically modified
again. performing a 'cold boot' or powering down the Model One/25 will not
change this conf iguration.

Conf iguration changes should fnot be attempted while the Model One/25
is connected (logged on) to the VAX 11/785. Conf iguration changes at this
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* time will usually camse the Model One/25 to lock up. There Is no definite

way of 'unlock' the Model One/25. Sometimes the system will remain Idle

for hours before It will respond.
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O /uAno i E-. LDercl .Li.im

The functions Implemented In this device driver package represent just

a small set of available functions needed -to fully exploit the capablitles of

the Raster Technologles Model One/25-graphic system.

All modules Implemented In this package were written In 'C'. They

perform no error checking on operand values. They are, however,

eyntactically Identical to graphic routines defined in the Raster

S.chnologies Programming Guide [Raster Technologies, 1 983).

The Internal processing of the modules were modeled after an earlier

Pascal implementation [Suzuki,191131 Bascially, they convert an Interger

value (operator or operand) Into a hexidecimal ascii string representation.

This string Is then sent to the Model One/25 via the 'putchar' command. The

model One/25 Interprets the string and performs the desired operation. For

example, the opcode to clear the display screen Is 135. This value is

converted to a ascii string of '87 and sent to the Model One/25, Interpreted

and the screen cleared. All modules defined In this package function

similarly.

A listing of the implemented modules follows, accompanied by a brief

explanation The reader should refer to the Raster Technologies

Programming Guide for complete description of these modules and other

commands supported I 96 t Model One/25.

ack() sends an acknowledgment (octal 07) to the Model One/25
after an read.

alpha-mode() puts the Model One/25 Into an alpha..numerics mode.
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buttbi(l~m) :assign a macro, m,, with a particular mouse buttonil.

* circle(r) :draws a circle of radius r at the current point

clear() clears the display screen with the current color.

cloadcrx~y) :loads coordinate register, r, with xy.

cmove(d,s) :copies the contents at coordinate register, s, Into
coordinate register d.

cororg(xy) :sets the coordinate origin register to x,y.

drwabs(x~y) :draws a line from the current point to x~y.

f lush() empties the event queue.

graph..modeo: puts the Model One/25 Into graphics mode.

macdet(n) :begins the nth macro def InIti in.

O macend() ends a macro def inition.

macera(n) :clears the nth macro def inition.

moddis(f lag) :changes the displays address mode.
flag a0 512 x512

a 1 :1024 x 1024

movabs(x,,y) :changes current point to x,y.

pixtun(mode) :sets the way In which images are drawn on the screen.
modeu 0 normal

n 4 XOR
*5 :OR
*6 :AND

point() displays the current point.
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prmnfil(f lag) :sets the primitive to be filled or unfilled.
flag mO : unfilled

wI :filled

readbu~fflag,ctirbutton~xy) :returns the function button and cursor
location.

readcr(r~x,y) : returns the values x,,y from the register r.

rectan(x~y) : draws a rectangle with the lower left hand corner at the
current point and the upper right hand corner a x~y.

scrorg(x~y) : sets the screen coordinate register to x~y.

text Il(string) :draws a text string starting at the current point.

textc(s,a) : specifiles size (s) and angle (a) of next text draw.

value(r,g~b) : changes the current pixel color.
0 (a r~gb (a 255

window(xlayl~x2,,y2) : defines the clipping window.

xhair(ntflag) :enables crosshaIr n.
flag. 0 disable

Il enable
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0
The prpose of this investigation was to design and 4v 9. aent a

graphics based environment capable of supporting the rapid ..cVototyping
of pictorial cockpit displays. Attention was focused on the interactive
construction of pictorial type cockpit displays from libraries of
cockpit displays and symbology.

Implementation was based on an object-oriented programming,
paadip. This approach provided a natural and consistent meanr of
mappgng abetract desiVn epeoiftiotione -Into- fua•z'aio softwpv"
I.plementation was. suppo~ted by an objoct-orlented extension to the 'C,
programming language.

Although this investigation addressed a specific application, the
resulting graphic enviroment is applicable to other areas requiring the
rapid prototyping of pictorial displays.
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